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ABSTRACT
Separation of heavy metals to obtain potable water for domestic and agricultural applications is important considering health effects, bioaccumulation 
properties and applicability. The separation of Cr and Mn salts by Donnan exclusion are investigated using polysulfone (PSF) based membranes 
modified by anchoring ZnO nanoparticles. Use of Acid-treated ZnO nanoparticle enhnanced rejection properties for Cr and Mn (97.12 and 
98.37%, respectively) for membranes based on 40% PSF, 8% PEG -400 and 0.8% ZnO. The use of polyethylene glycol (PEG)with molecular 
weight of 200 Da enhanced rejection properties to ~ 99%. This would provide excellent pathway for PSF membrane modification without 
affecting stability.Separation was dependent uponconcentrations of PSF, PEG, ZnO nanoparticles in dope solution, and bubble point pressure, 
pore size, number of pores, etc. Analysis of these properties and effect would provide pathway for design of membranes for heavy metal 
removal and process applications. Hence, they were analyzed using R studio multi-attribute linear regression model. Membrane performance 
regression analysis provided correlation with 95% fitting accuracy with 0.98 coefficient of regression, suggesting good relationship between 
predicted and observed data. This shows the applicability of model to save time and cost involved in designing membrane formation parameters 
and properties with optimized applicability.
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Graphical Abstract

1. Introduction

Freshwater demand is increasing due to population, urbanization, 
and exponential growth in industrialization, across the globe [1]. 
This growth resulted in the generation of large amounts of in-
dustrial effluent and has become the major source of water 
pollution. This wastewater be treated for removal of harmful com-
ponents which would become useful resource [2]. Such treatment 
of industry effluent for removal and recovery of pollutant and 
recycle of water would provide a practical solution for the water 
crisis.

Heavy metal is one of the major pollutants in wastewater due 
to their toxicity and bioaccumulation properties [2-4]. At the 
same time, these components have numerous applications in 
industrial purpose and biological applications like growth sup-
port, medicinal application, infection disruption, anticancer ac-
tivity and soil microbial community modulation, etc. [5-7]. 
Selection and design of separation methods for this purpose is 
one of the tedious tasks. The traditional methods have their own 
challenges of secondary pollution or dumping of toxic waste 
[5, 8]. The membrane-based separation is reported using reverse 
osmosis (RO) and nanofiltration (NF) [9,10]. Though efficient 
separations are reported with RO and NF, they are known to 
separate other salts [10]. Additionally, there are limitations of 
high energy consumption, membrane fouling, concentration po-
larization for these methods [9, 10]. One techno-economically 
feasible solution could be the modification and formulation of 
ultrafiltration (UF) membrane for desired permeability and se-
lectivity properties. Forming UF membranes with desired trans-
port properties and surface charge impartation would benefit 
such applications. Incorporating surface charge would provide 
desired separation properties for heavy metals by Donnan ex-
clusion [11,12]. Such modification of membranes by coating them 

with surface active layer has shown enhanced separation proper-
ties for Boron and humic acid (HA) [13,14]. The incorporation 
of charge in membrane surface would provide more stability 
compared to surface layer coating.

Optimization of membrane properties such as surface charge 
and smoothness are highly important while defining techno-eco-
nomic feasibility of membrane processes. It would affect the 
separation efficiency and transport rate, in turn affect the overall 
membrane performance and related process design. These param-
eters are dependent upon different factors like solution composi-
tion, casting conditions, base polymer properties, solvent used, 
concentration of polymer, additive, surface modifier etc. [15-18]. 
Thus, selection of base polymer and optimization membrane 
formation parameters combinedly would define the process 
applicability.

Hence there is a need to obtain the correlation between membrane 
composition and properties such as transport and selectivity as 
membrane performance is dependent on these parameters. These 
parameters and conditions would be used further to optimize mem-
brane formation by developing a conceptual mathematical 
correlation. It would define the effect of these parameters on mem-
brane performance, so that the membranes with predetermined prop-
erties can be developed. Hence data for membrane properties and 
preparation parameters and their effect on Cr and Mn rejection 
analysis was utilized for correlating independent (input) variables 
and dependent (output) variables based on multivariable regression 
method.

The regression term was first used by Sir Francis Galton in 
1877 for defining the process to foresee the effect of one variable 
on another [1,19]. Whereas further the term multiple regression 
is evolved which illustrates the method of correlating several varia-
bles to predict one variable [1,19]. Multiple regression is a simple, 
versatile statistical method to predict single variable as function 
of multiple independent variables [1,19,20]. It gives the relation 
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between known and unknown parameters to evaluate for some 
unknown parameter [1].

In the case of current work, the PSF was selected as base polymer 
due to its stability properties [5, 8]. Objectives of current work 
are optimization of PSF based membrane formation and its transport 
properties through use of polyethylene glycol as porogen and ZnO 
as additives. All these would affect the membrane performance 
by Donnan exclusion through variation in membrane morphology 
and operational parameters, interaction between solute molecules 
and membrane surface. These optimization conditions and parame-
ters would be further correlated with membrane performance and 
metal rejection properties. Such optimized parameters and proper-
ties like dope solution concentration, pore size, number of pores, 
bubble point pressure, etc. would be correlated through data-based 
modelling. An experimental data-based model is developed and 
investigated for tolerance and error analysis. It would save the 
experimental necessity, expenses involved, indirect environment 
constraints, and time involved.

2. Materials and Methods

2.1. Materials

Chemicals essential for the present research study are polysulfone 
(PSF) of Molecular weight (M.W.) 35000 Dalton (Da) is purchased 
from Otto Chemie Pvt. Ltd. India. N,N’-Dimethyl acetamide (DMAc) 
was bought from Loba Chemie Pvt. Ltd. India. Polyethylene glycol 
(PEG) with M.W. 200 (PEG-200), 400 (PEG-400), 600 (PEG-600) 
Da were procured from High Purity Lab. Pvt. Ltd. India. PEG of 
M.W. 1500 and 6000 (Da) were obtained from Loba Chemie Pvt. 
Ltd. India and Sisco Research Lab Pvt. Ltd. India, respectively. 
Zinc oxide nano powder of 80-100 nm size was bought from 
Nanoshel LLC, India. HCl was purchased from Merck Ltd., India. 
Potassium dichromate (K2Cr2O7), and potassium permanganate 
(KMnO4) were purchased from Sisco Research Lab. Pvt. Ltd., India. 
Non-woven polyester backing 3324 was purchased from Ahlstrom 
Hollytex, Finland.

2.2. Membrane Preparation

The UF membrane used for analysis was prepared using ShivOhm 
automatic casting system. The polysulfone with concentration 
ranging from 23 to 43% was dissolved in dimethylacetamide. 
The polyethylene glycol of different molecular weight and different 
concentration [8, 21, 22] and ZnO nanoparticles from concen-
tration 0.2 to 1% (nascent or acid treated) were added in dope 
solution [8, 23]. In particular, the backing was attached to flat 
glass plate by scotch tape and attached to the caster. The degassed 
solution was poured on the same and spread using doctor knife 
attached to the system. A gap of 100 μm was maintained between 
knife edge and backing. The transition speed of knife was main-
tained at 100 mm/s using a drive attached. Air dry time was 
maintained at 10 sec, followed transition into gelation bath main-
tained at 30˚C. Formed membranes were maintained at 4˚C, in 
formalin solution.

The formed membranes were used for property analysis and 
application. The data was collected in triplicate and average was 
used so as to avoid issues with manual and experimental errors.

2.3. Membrane Bubble Point, Pore Size, and Number of 
Pore Analysis

The membrane samples preserved in formalin solution were 
dipped into water to avoid effect of formalin on membrane property 
analysis. Such wet membrane coupon was placed in sample holder 
and air was pressurized through it. The air was allowed to pass 
with lowest pressure 0.1 bar for 5 min and then same procedure 
is repeated with 0.1 bar incremental pressure. The pressure at 
which maximum pore size of membrane opens, and a continuous 
air bubble is observed, the corresponding pressure is called bubble 
point pressure [24]. The pore size of membrane is calculated by 
using Cantor’s equation expressed as Eq. (1) and pore density 
by Hagen-Poiseuille’s equation given as Eq. (2). 

  cos
 (1)

     ⋅ ⋅⋅
(2)

where rpi is pore radius in m, σ is surface tension (N/m), θ is 
contact angle (degree), Pi is the applied pressure to open these 
pores (Pa), Ni is the number of pores per unit area (m2), η is 
water viscosity (Pa.s), Ji is water flux at ith increment when applied 
pressure is Pi, l is length of pore which is assumed to be equal 
to skin layer thickness of membrane, similarly Ji-1 is water flux 
at corresponding ith decremental pressure Pi-1 [25, 26].

2.4. Rejection and Water Flux Analysis

Pure water flux was calculated with the help of dead-end cell. 
Here the membranes samples were mounted in dead end cell. 
It is fed with distilled water and pressurized using compressed 
air. The transported water is collected at regular time interval 
and is used in calculation of water flux using Eq. (3). The detailed 
procedure was reported by Dhume et. al. [21].

×∆
(3)

where J is water flux in lit/m2･h (LMH), V is volume of water 
collected, A is the cross-sectional area of the membrane (m2) 
and ∆T is the time (s) to collect water of volume V. Though 
the LMH is not an SI unit, it is largely used to define membrane 
properties.

The membrane selectivity is the key factor based on which 
the membrane will be selected for separation. It is defined with 
the help of membrane rejection analysis. A synthetic solution 
of 1000 ppm concentration is fed to the membrane cell. It was 
maintained with constant stirring to avoid concentration polar-
ization and fouling as reported earlier [8,21]. The permeate solution 
was collected after disposal of 50 ml solution to avoid effect of 
water from pores of membranes, as reported earlier [8]. The concen-
tration of metal salts in collected samples were analyzed with 
the help of UV spectrophotometer. The membrane rejection (%R) 
can be calculated by Eq. (4)
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 × (4)

where Cp and Cf are concentration of permeate and feed, re-
spectively [20,25].

2.5. Statistical Analysis

Multiple regression method is significant in statistical analysis 
of data. R-Studio and Statistics online tool has been used in this 
analysis [27]. Regression analysis provides mathematical relation 
between dependent and independent variables. If X is an in-
dependant variable, k is number of independent variables and 
Y is dependent variable, then multiple regression model equation 
is given by Eq. (5)

Y = β0 + β1X1 + ⋯ + βkXk + ε  (5)

where β0, β1, … etc. are regression model coefficients and ɛ is 
random error or supporting element [20]. Y is dependent varia-
ble-metal ion rejection efficiency. X1, X2, … etc...are independent 
variables and β1, β2, … etc. are respective regression model 
coefficients. Generally, data fitting is validated by R square, ad-
justed R square, multiple corrélation coefficient R and F-test [16]. 
R square measures correlation strength on 0 to 100% between 
dependent variable and linear model. The value of R square ranges 
from 0 to 1. If R square is zero, it indicates that there is no linear 
relation between observed and predicted values. If it is one, it 
means predicted and observed values are identical. While if R 
square is 0.5, it implies that half of variance is explained by model 
based upon considered dependent variable The variance measures 
how each number in the data set is away from average mean. 
Adjusted R square considers both the number of data points, and 
independent variables number for predicting data. Adjusted R 
square is calculated by Eq. (6),

      (6)

where n is the number of data points, k is number of independent 
variables.

2.6. Tolerance

Tolerance is one of the measures for defining multi-collinearity 
between two or more variables of model [19]. It is calculated as 
Eq. (7)

 (7)

2.7. Variance Inflation Factor (VIF)

The VIF is one of the regression analysis tools used to compute 
and quantify how much the variance is inflated [28-30]. VIF is 
calculated by Eq. (8),

 
(8)

3. Results and Discussion

3.1. Membrane Transport Properties and Rejection Analysis

The membranes were formed using PSF, DMAc, PEG and ZnO 
nanoparticles (nascent or acid treated). PSF is chosen as base 
polymer because it has excellent chemical inertness across the 
entire pH range, good compressive strength and has high mechan-
ical, chemical, thermal, and hydraulic stability [31]. Also, it has 
low water absorption rate, swelling and shrinkage [21]. It is widely 
available, inexpensive, and easy to process. Major limitation of 
PSF to be used as membrane is its hydrophobic nature [32]. This 
can be overcome by proper use and selection of additives and 
its use in optimum amount. DMAc is chosen as a solvent for 
PSF as it forms a stable dope solution at a higher concentration 
of PSF. Also, the use of DMAc as a solvent can give a more porous 
structure as compared with N,N’-dimethyl formamide (DMF) and 
N-methyl pyrrolidone (NMP) [18,33]. The polyethylene glycol of 
different molecular weight and different concentration were added 
to impart hydrophilicity and smoothness to membrane [22]. It 
will help to reduce fouling of membrane [8,21,22]. The ZnO nano-
particles from concentration 0.2 to 1.0% were added in dope 
solution. It helps to improve morphology of membrane and imparts 
charge to membrane. The use of acid treated ZnO particles shows 
better performance than nascent [8,23]. Similar enhanced separa-
tion of boron and humic acid has been reported [13,14]. The separa-
tion principle applied is Donnan exclusion. The different composi-
tion membranes used for separation are shown in Table 1.

The experiments were carried out in triplicate with the variation 
of ± 5% in results, while sequential optimizing the parameters. 
The results of different membranes for rejection efficiency and 
membrane morphology are presented in Fig. 1 to 6. 

It can be seen from Fig. 1, 2; the pore size, pore density, bubble 
point pressure, and rejection efficiency depend on composition 
of dope solution used for formation of membrane. Membrane pore 
size and number of pores plays an important role to define mem-
brane separation efficiency and transport rate [8,21,25]. To calcu-
late the pore size of membrane, the bubble point pressure is 
required. The pressure at which maximum size of pores opens 
is called as bubble point pressure. It was observed that when 
concentration of polymer increases, its pore size has reduced, 
resulted in increase in bubble point pressure required [21,24,34]. 
Similarly, when pore former PEG (0 to 10% concentration) is used 
the pore density has increased by maintaining rejection properties 
[31,35]. There is always a trade-off between membrane selectivity 
and transport rate. For good selectivity lower pore size is preferred 
whereas it reduces the water flux. The Donnan exclusion separation 
retains the solute particles in spite of larger membrane pore size 
[11,12]. For any membrane processes, at low pressure the good 
water flux is desirable. The Fig. 3 shows the effect of PEG M.W. 
and Fig. 4 describes the effect of PEG concentration on membrane 
morphology, permeability, and selectivity.

It can be seen from Fig. 3, decrease in M.W. of PEG resulted 
in increase in porosity, but reduction in the pore size of membrane. 
It leads to increase in bubble point pressure, and smaller pores 
enhanced metal ion rejection properties. Enhanced transport prop-
erties with minimum pore size and maximum metal ion rejection 
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were observed at 8% PEG concentration of base polymer. Further 
a reduction in pore size and enhanced rejection properties with 
decrease in PEG molecular weight has been observed [21,24,25]. 
The effect of concentration of PEG-400 and ZnO nanoparticles 
is shown in Fig. 4. The improvement in rejection efficiency for 
PEG-400 as compare with higher M.W. PEG was observed.

Fig. 5 and 6 show the effect of acid (HCl) treated ZnO nano 
particles use in membrane. As seen from Figs. 2 and 6, the use 
of HCl treated ZnO as an additive to dope solution resulted in 
large increase in heavy metal rejection efficiency of the membrane 
formed [11,12] as compared with use of nascent ZnO nanoparticles. 
The rejection efficiency increased from 90.5% to >99% as seen 

Table 1. Membranes compositions and their nomenclature

PSF 
CONC. 

(%)

PEG 
(M.W., 

Da)

PEG 
CONC. 

(%)

ZnO 
CONC. 

(%)

ZnO 
Treatment

Membranes
PSF 

CONC. 
(%)

PEG 
(M.W., 

Da)

PEG 
CONC. 

(%)

ZnO 
CONC. 

(%)

ZnO 
Treatment

Membranes

23  0  0 0  No M1 29 400 8 0.8 No M22

25  0  0  0 No M2 29 200 8 0.8 No M23

27  0  0  0 No M3 29 400 8 1 No M24

29  0 0  0 No M4 29 400 8 0.8 No M25

29 6000 0  0 No M5 29 400 8 0.6 No M26

29 6000 2  0 No M6 29 400 8 0.4 No M27

29 6000 4  0 No M7 29 400 8 0.2 No M28

29 6000 6  0 No M8 29 400 8 0 No M29

29 6000 8  0 No M9 32 400 8 0.8 Yes M30

29 6000 10  0 No M10 35 400 8 0.8 Yes M31

29 6000 8 0 No M11 37 400 8 0.8 Yes M32

29 6000 8 0.2 No M12 40 400 8 0.8 Yes M33

29 6000 8 0.4 No M13 43 400 8 0.8 Yes M34

29 6000 8 0.6 No M14 40 200 8 1 Yes M35

29 6000 8 0.8 No M15 40 200 8 0.8 Yes M36

29 6000 8 1 No M16 40 200 8 0.6 Yes M37

29 6000 6 0.6 No M17 40 200 8 0.4 Yes M38

29 6000 10 1 No M18 40 200 8 0.2 Yes M39

29 6000 8 0.8 No M19 40 200 8 0 No M40

29 1500 8 0.8 No M20 40 200 6 0.6 Yes M41

29 600 8 0.8 No M21 40 200 10 1 Yes M42

Fig. 1. Effect of membrane composition on membrane properties of pore size and bubble point.
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Fig. 2. Effect of membrane composition on their properties of water flux in (lit/m2.h, LMH) and Cr, Mn rejection.

Fig. 3. Effect of PEG Molecular weight (M.W.) on bubble point, number of pores, water flux, and Cr and Mn rejection properties.

Fig. 4. Effect of concentration of PEG400 and ZnO nanoparticles on membrane water flux, bubble point, number of pores, and Cr and Mn 
rejection properties.
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from the rejection of Mn for membranes with 40% PSF in dope 
solution (M40 and M36, respectively). The same could be taken 
to more than 99 % by variation in ZnO acid treatment from 1 
hr to 1.5 hr, while the PEG MW changed from 400 to 200 Da. 
Whereas it was increase from 98.3 to 99% even for Cr [Fig. 6]. 
This excellent metal rejection efficiency is important in removal 
of these metals from water. It underlines more than 99% removal 
of these metals per pass.

This separation and variation in metal rejection properties can 
be attributed to variation in membrane surface composition. The 
variation in membrane surface material can be seen varying with 
composition in dope solution (Fig. S1).

A membrane with a surface charge similar to the salts in solution, 
for instance, would have a higher rejection rate. The Donnan ex-
clusion principle is recognised for such repulsive interaction [5,21]. 
As seen from electron dispersive x-ray diffraction (EDS) scanning 
electron microscopic (SEM) images, is used to study surface qual-
ities, chemical composition, and component distribution. As seen 
from EDS image (Fig. S1-A) shows presence of C, O, S, and Zn 

in membrane and there is absence of chlorine. It suggests ZnO 
nanoparticles are present in their nascent form. Also, the dis-
tribution of Zn was observed to be homogeneous in Fig. S1-B. 
Whereas Fig. S1-C shows the presence of elements C, O, S, Zn, 
and Cl in membrane matrix, presence of Cl indicates ZnO was 
treated with HCl. The distribution of Zn is extremely good in 
Fig. S1-D as compared to Fig. S1-B This suggests the membrane 
formed from ZnO modified with HCl and has homogeneous dis-
tribution, and dispersion of nanoparticles. It supports formation 
of the highly charge incorporated in membrane with evenly dis-
tributed membranes, which resulted producing the maximum re-
jection properties for Mn and Cr.

This excellent removal efficiency provides a major tool for re-
moval of these metals from industrial effluent and ground water. 
Such removal would help us design the separation system to obtain 
the pure water, which can be used in further applications. It has 
been observed that membranes showed excellent metal rejection 
efficiency for dope solution containing 8% PEG and 0.8% ZnO 
nanoparticles concentration. The optimized membranes would 

Fig. 5. Effect of acid treated ZnO nanoparticles concentration on pore size, number of pores and bubble point properties of PSF based membranes 
with PEG-200.

Fig. 6. Effect of acid treated ZnO nanoparticles concentration on water flux and rejection on PSF based membranes containing PEG-200.
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be an excellent system for separation of these molecules and purifi-
cation of water.

3.2. Multi-Attribute Linear Regression Model for ‘Mn’ and 
‘Cr’ Rejection Analysis

R studio software was used for multiple regression statistical 
analysis for correlating metal ion removal efficiency of polysulfone 
based membranes with its formation and operational parameters. 
Multiple linear regression expresses the linear equation, outliers 
and calculates the p-value, R and adjusted Fisher-Pearson co-
efficient of skewness [36,37]. For example, if the data distribution 
is skewed, this approach will adjust it to gaussian kind of 
distribution. A linear regression model which encompasses more 
than one explanatory or predictor variable is referred to as multiple 
linear regression model. The Eq. (9) is fitted regression model 
for Mn ions.

Y = -194.8398 + 2.5578P1 - 0.001797P2 + 10.9039P3 
+ 248436.8781P4 + 0.0003164P5 + 6118864889.9P6 (9)

where Y is dependent variable defining metal (Mn) ion rejection 
efficiency. P1, P2, P3, P4, P5, P6 are independent variables viz., 
PSF concentration, PEG M.W., ZnO concentration, flux in m3/m2·s, 
bubble point pressure in bar, and pore size in nm, respectively; 
while β1, β2, … are respective regression model coefficients.

Overall correlation obtained through multiple linear regression 
indicated that the metal rejection Y is dependents on PSF concen-
tration, PEG (M.W), PEG concentration, ZnO concentration in mem-
brane formation solution and treatment, flux, bubble point pres-
sure, pore size, no. of pores. The correlation can be defined as 
Y, (F(6, 37) = 208.02, p < 0.001, R2 = 0.97, R2

adj = 0.97).
The individual predictors were calculated further and specified 

that PSF concentration (t = 5.359, p < 0.001) and PEG (M.W) 
(t = -4.201, p < 0.001), PEG concentration (t = 3.578, p < 0.001), 
ZnO concentration (t = 3.336, p = 0.002), ZnO nano treatment 
(t = 4.557, p < 0.001) and Flux (t = 3.259, p = 0.002) were 
significant predictors in the model.

In this approach, based on the predictor’s p-value by applying 
the backward stepwise procedure the preliminary sorting of the 
predictors is generated. The statistical data correlation analyzed 
by p–value. It is used to define the statistical confidence level. 
Since the overall p value is much smaller than 0.01, it indicates 
there is 99% confidence level for relation between variables [20].

Further it is supported by R2 analysis. R2 value of 0.9712 which 
shows that the predictors explain 97.1% of the variance of Y variable 
and excellent data correlation with metal ion rejection. It means 
data points are scattered less around fitted regression line or there 
is very small difference between observed and fitted data.

Adjusted R square equals 0.967115 indicates that statistic is 
well suitable for comparing model with different number of 
variables. The coefficient of multiple correlation (R) equals 0.9855 
which emphasis on a very strong correlation between the observed 
and predicted data.

It is observed from regression model (Eq. 9), the regression 
variable ZnO nanoparticle concentration (10.90) and pore size 
(618864889.9) has higher influence on metal ion rejection as com-

pared to number of pores. This itself supports our theoretical 
consideration of Donnan exclusion principle based heavy metal 
separation. A smaller pore size would bring a higher number of 
heavy metal ions in the sphere of influence. This would result 
in higher retention. Further the effect would be supported by 
ZnO concentration. Higher concentration would result in higher 
charge and interaction-based rejection of heavy metal ions. The 
number of pores would support transport properties or flux, higher 
number of pores would enhance transport rate due to availability 
of larger number of transport passages. This enhancement in pores 
is provided by leaching of PEG during formation of membrane 
by phase inversion. Hence the PEG concentration would also affect 
transport properties significantly not the rejection. Thus, the model 
defines heavy metal rejection excellently on the basis of theoretical 
consideration and parameters of metal ion separation by Donnan 
exclusion principle. The higher R square value and other parame-
ters of tolerance and statistical confidence level shows excellent 
fit and good quality of regression and model equation, which sup-
ports the theoretical considerations [1,19,20].

Similarly for Cr Multiple linear equation is given by Eq. (10).

Y = -245.791298 + 2.694843Q1 - 0.00143342Q2 + 5.324175Q3  
+ 0.000373141Q4 + 973501404.5Q5 + 1.96113×10-11Q6

(10)

Here in Eq. (10), Y is dependent variable defining metal (Cr) 
ion rejection efficiency. Q1, Q2, Q3, Q4, Q5, Q6 are independent 
variables viz., PSF concentration, PEG M.W., ZnO concentration, 
bubble point pressure in bar, pore size in nm and number of 
pores, respectively, which are affecting Cr. Removal efficiency. 
Whereas β1, β2, … etc. are respective regression model coefficients 
correlating independent variables with Cr separation efficiency. 
A variation is observed here compared with Mn based model that 
the water flux is replaced by pore size and number of pores. These 
are interdependent parameters, where the water flux is dependent 
upon combination of number of pores and pore size.

The overall outcomes of the multiple linear regression showed 
that there was a combined significant noteworthy effect between 
the PSF concentration, PEG (M.W), PEG concentration, ZnO con-
centration, ZnO nanoparticles treatment, flux, bubble point pres-
sure, pore size, no. of pores, and Y, (F(6, 37) = 373.9, p <.001, 
R2 = 0.98, R2

adj = 0.98).
In the result, R square is calculated as 0.98377 which shows 

that the predictors describe 98.4% of the variance of Y variable. 
The coefficient of multiple correlation (R) square equals 0.9918 
which emphasis on a very strong correlation between the observed 
and predicted data.

The individual predictors were further studied and shown that 
PSF concentration (t = 7.532, p < 0.001) and PEG (M.W), (t = 
-3.707, p < 0.001) and PEG concentration (t = 2.622, p = 0.013) 
and ZnO concentration (t = 6.391, p < 0.001) and ZnO nanoparticles 
treatment (t = 5.592, p < 0.001) and flux (t = 3.913, p < 0.001) 
were significant predictors in the model.

3.3. Tolerance

The linear regression assumes there is no, modest, or high multi-
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collinearity in the data. The multicollinearity is a phenomenon 
in which one predicted variable is calculated through others with 
good accuracy. Multicollinearity occurs when these variables are 
well related to each other. It also determines interrelation between 
two or more independent variables by calculating the tolerance 
[19]. The tolerance determines the interrelation between data 
points. From the data the R square is 0.97 for Mn and 0.98 for 
Cr, it means tolerance is 0.03 and 0.02 for Mn and Cr, respectively, 
it indicates there is good multicollinearity in the data.

3.4. Variance Inflation Factor

The VIF shows correlation for predicted values, or it can calculate 
the intensity of correlation between independent variables. If VIF 
value is 1, it indicates predictors are not correlated. If VIF is between 
1 to 5, it is moderately correlated and if it is larger than 5, it 
is strongly correlated [20,30]. The use of VIF is to know how 
much variance of calculated coefficient are affected by multi-
collinearity [30].

For Mn and Cr, the overall VIF values are 33.33 and 50, 

respectively. As these VIF values are greater than 10, it suggests 
a high multicollinearity relevance. The multicollinearity may im-
pact the coefficients or the skill to select the predictors, but not 
suitable for the dependent variable (Y). The priori power that 
is the power to test the entire model is strong which gives a value 
of 0.8294.

3.5. Model Adequacy Testing

3.5.1. Quantile-Quantile (Q-Q) plot
The sample data analysis for goodness-of-fit is verified by Q-Q 
plot [38,39]. It can determine data normality by graphical 
assessment. The data points are normal if points are closer to 
straight line, and they are termed as outliers if points are scattered. 
The residual plots that help to check whether the data matches 
the normality and homoscedasticity assumptions of linear 
regression. Residual value is the difference between actual and 
predicted value. Q-Q plots compares the distribution of data to 
a normal distribution by drawing the quartiles of data against 
normal distribution. The residual Q-Q plot from Fig. 7 A1 (for 

Fig. 7. Residual Plots.
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Mn) and A2 (for Cr) indicates the data is homoscedastic and normally 
distributed. There are rare outliers and almost all data points are 
close to reference line shows the data normality.

For Mn, the overall regression is right tailed with values of 
F = 208.0161, p-value = 0. Since p-value < a (0.05), the NULL 
hypothesis. The independent variables - PEG concentration, ZnO 
nano particles treatment, no. of pores is not substantial as predictors 
for Y. Therefore, these variables are omitted from the model. Linear 
regression presumes normality for residual errors. The p-value 
equals 0.4916 hence it is supposed the data to be normally 
distributed. In homoscedasticity the white test p-value equals 
0.05998 (F = 3,0161) thus the variance is homogeneous and vali-
dates residual normality.

For Cr, the general regression is right tailed with values of 
F = 373.904, p-value = 0. Since p-value < a (0.05), the NULL 
hypothesis. The independent variables - PEG concentration, flux, 
and ZnO nano treatment are not considerable as predictors for 
Y. Therefore, these variables are omitted from the model.

3.5.2. Residual and predicted versus actual plot
In residual versus actual plot the data points are symmetrically 
scattered around reference line is shown in Fig. 7-B1 (for Mn) 
and 7-B2 (for Cr). Whereas in predicted versus actual graph Fig. 
7-C1 (for Mn) and 7-C2 (for Cr)., the data is closer to reference 
line and no outliers. The predicted Vs actual graph shows that 
all the points are close to the regressed diagonal line, it suggests 
good fit of data [38]. This study is satisfactory to correlate the 
input variable influence on different dependent and independent 
variables. Though, the ZnO nano particles treatment in model 
suggests some more experimentation is required to find the depend-
ency of rejection on this parameter.

3.5.3. Standard error and deviation in the analysis
In a multiple linear regression model, the error term represents 

the variability in the data that is not explained by the model. 
The error term is assumed to be normally distributed with a mean 
of zero and a constant variance. Error bars can be used to represent 
the uncertainty in the predicted values of the dependent variable. 
One way to do this is to calculate the standard error of the estimate, 
which is a measure of the variability of the predicted values. 
The standard error can be used to construct confidence intervals 
around the predicted values, which can be represented graphically 
using error bars. The residual standard error is 5.81, which measures 
the average deviation of the observed values of y from the fitted 
values. The multiple R-squared value is 0.9603, indicating that 
the model explains a high proportion of the variance in the data 
[39]. The confidence interval for the predicted values of the depend-
ent variable y is given by the fit, lower, and upper variables of 
the output. The fit value represents the fitted value, which is 
the predicted value of the dependent variable based on the re-
gression model. These values represent the fitted value and the 
lower and upper bounds of the confidence interval, respectively. 
In Mn case, the fitted value is 59.59136 and the 95% confidence 
interval for the predicted value of y is [57.81311, 61.36962]. In 
Cr case the fitted value is 56.09121 and the 95% confidence interval 
for the predicted value is [54.94518, 57.23723]. This means that 
we can be 95% confident that the true mean value of y lies within 

this interval. Error bars can be used to represent this uncertainty 
in the predicted values graphically. The length of the error bars 
would correspond to the width of the confidence interval, with 
longer error bars indicating greater uncertainty in the predictions. 
The error bar plot with respect to the predicted value y is shown 
in the supplementary materials (Fig. S2).

4. Conclusions

Separation of heavy metals using PSF based ultrafiltration mem-
branes is based upon membrane formation parameters and proper-
ties, viz., PSF concentration, PEG M.W., ZnO concentration and 
treatment of ZnO nanomaterial by HCl. These parameters affected 
membrane properties of bubble point pressure in bar, pore size 
in nm, number of pores, water flux, which affected the removal 
properties for Mn and Cr. The anchoring of ZnO nanoparticles 
suitably modified by treatment with strong acids, vary surface 
charge to PSF based membranes. These charged membranes 
showed excellent removal properties for Mn and Cr salts as 97.12 
and 98.37%, respectively, which can be optimized to 99% for 
both materials. The combination of PSF as base material for mechan-
ical, chemical and thermal stability and anchoring such charged 
nanomaterial provide an excellent method for formation of mem-
branes for industrial applications. This formation parameters were 
correlated with separation properties using multiple linear re-
gression with the help of R studio software. A model was built 
and was found to possess excellent correlation with experimental 
as indicated by R square is 0.97 and 0.98 for Mn and Cr, respectively. 
Further their smaller (0.01) P-value suggests 99% confidence level 
for relation between variables, while tolerance of 0.02-0.03 implies 
good multicollinearity in the data. The nature of residual plots 
implies the data is homoscedastic and normally distributed.

Altogether the optimization approach and statistical analysis 
can be utilized for further membrane development based upon 
PSF with desired modification using porogenic PEG and surface 
modifying ZnO for desired requirement of metal removal. The 
considered metals are some of the major pollutants in the tannery 
and metal processing industry. These optimized membranes can 
be utilized in combination with processes towards real life applica-
tions for separation of these metals. Similarly, the optimization 
approach and membrane properties can be tuned for separation 
of range of heavy metals owing to variation in their physical and 
chemical properties. This would provide a techno-economical 
method for separation of such heavy metals.
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