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1. Introduction

Coal is the most consumed primary fossil fuel. Its consumption 
outranks by the factor of 3.4 and 3.8 times, respectively, when 
compared with the other two primary fossil fuels, i.e. oil and natural 
gas [1]. Moreover, its demand is predicted to increase over 50% 
in the coming decade [2]. According to the BP Statistical Review 
of World Energy 2019, the largest share i.e. ~38% of all the electrical 
power generation in the world is attributed to the coal [3]. In order 
to reduce the cost of electrical power generation, low grade coal 
characterized by the lower combustion value, is often used instead 
of high grade bituminous coal [4–6]. The South Korean domestic 
power plants, for instance, are reported to burn the coal having 
gross calorific value (GCV) of 5,400 kcal/kg in their power plants 
designed for 6,080 kcal/kg [6]. This use of low grade coal, in such 
power plants which are designed for the high grade coal, adversely 
affects the performance and economic life of auxiliary equipment 
(such as coal feeders, coal mills, and induced and forced draft 
fans, etc.) [6]. This problem can be addressed by managing the 
GCV of low grade goal. 

The GCV, or higher heating value (HHV),  is an indicator of 
chemically stored energy content of a coal [7, 8]. It is usually 
a decisive parameter in the assessment of the value of the coal 
and thereby provides a basis for its purchase agreement [9, 10]. 
GCV is the amount of energy released during the combustion 
of a coal. It is usually obtained by quantifying the total amount 
of heat evolved under the complete oxidation of a unit mass 
of a certain sample of coal in excessive amount of oxygen [11, 
12]. The amount of heat evolved is measured, at specified con-
ditions, using bomb calorimeter and expressed in BTU, MJ/kg, 
or kcal/kg [9, 13]. 

Thermal power plants often determine GCV and perform prox-
imate analysis to assess the coals [8]. It is mainly because GCV 
provides quick and easy estimate of the quality of the coal [14]. 
Consequently, several equations have been developed over the 
years to predict the GCV of various classes of coals [8, 14–16]. 
Herein, we systematically studied the effects of environmental fac-
tors (temperature, humidity, and airflow) on GCV of low grade 
coal as characterized by the change in its moisture content, fixed 
carbon, volatile matter, and ash content (proximate analysis) using 
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response surface methodology (RSM). RSM-based approach con-
sists of  the selection of appropriate statistical design of experiment, 
development of a mathematical model to represent experimental 
results, and quantitative representation of individual and com-
bined effects of process factors on response [17, 18]. This ap-
proach substantially reduces the number of experiments, in-
troduces the variability, and helps in quantitatively determining 
the linear, interaction, and quadratic effects of factors. It also 
provides a mathematical model for the response(s) of interest 
for prediction [17–20]. 

RSM had been successfully applied to improve the energy value 
of various organic wastes [21–24]. These studies were mostly fo-
cused on optimizing the experimental conditions to synthesize 
biofuel from agricultural wastes. However, to the best of our 
knowledge, no study is yet reported where GCV of commercial 
low grade coal is systematically investigated to characterize and 
optimize the calorific value of coal using RSM.  The change in 
GCV of pulverized low grade coal, with respect to environmental 
factors, is the research question in our study. Though several 
factors affect the calorific value, including the type of coal, particle 
size, and environmental conditions [25–30]. The scope of this 
work is limited to explore the effect of environmental factors 
(temperature, humidity, and air flow) on low grade coal pulverized 
to obtain average particle size of 213 μm, according to standard 
method ASTM D7582 -15 [31].

This study can be helpful in managing the GCV and proximate 
analysis of coal at different environmental conditions of temperature 
and humidity. Therefore, this study might be helpful in recommend-
ing environmental conditions to optimize the GCV of low grade 
coal for its use in the thermal power plants. Primarily, this work 
is aimed at resolving the conflict between buyers and sellers over 
the GCV of coal at various environmental conditions. Secondarily, 
provide scientific water spray strategy for reducing fine dust 
complaints. As most coal is more than a few centimeters in size 
and is transported by ship or train and stored in a coal yard, which 
can cause rare spontaneous coal combustion [32] and results in 
the increasing petitions from the nearby community on fine dust 
issues. So, water is sprayed regularly in the coal yard to protect 
the fine dust dispersion. In addition, to enhance the energy effi-
ciency, pulverization process takes place just before being in-
troduced into the boiler, and the pulverized coal is transferred 
to the air preheated to around 200°C and supplied to the boiler 
after a short residence time. Considering these conflict activities, 
our results can provide a practical scientific water spray manage-
ment strategy to maintain GCV and protect fine dust at power 
plant. 

2. Material and Methods

2.1. Materials

Low grade coal was acquired from Coal Indonesia Limited at 
Samarinda, East Kalimantan, Indonesia. The samples were pulv-
erized and sieved to obtain particle size of ~213 μm mean 
diameter. The particle size distribution of coal is shown in 
Fig. S1. 

2.2. Experimental Setup

The environmental conditions of temperature, humidity, and air-
flow were mimicked using a temperature, humidity, and airflow 
control chamber, PR-2J (Espec Europe GmbH, München, Germany). 
The samples were kept at specified conditions (of humidity, temper-
ature, and air flow) in the chamber for a period of fifteen hours 
before analysis. The temperature was varied from 15 to 40 (°C), 
humidity from 20 to 80 (% relative humidity (R.H.)), and airflow 
below and above 0.5 m/s. These three experimental factors and 
their levels are shown in Table 1. 

Table 1. Experimental Design Factors and Levels

Factor Unit
Levels

-α -1 0 +1 +α
Temp. °C 15 19 28 36 40

Humidity % R.H. 20 29 50 71 80

Airflow m/s < 0.5 > 0.5

2.3. Sample Analyses

The gross calorific values (GCV), proximate and ultimate analyses 
of the coal were performed. The gross calorific values were de-
termined using Parr 6400 automatic isoperibol calorimeter manufac-
tured by Parr Instrument Company (Moline, IL, USA) following 
the ASTM D5865/D5865M-19. Proximate analysis was carried out 
to determine the percentages of moisture, volatile matter (VM), fixed 
carbon (FC), and ash content using TGA701 Thermogravemetric 
Analyzer, manufactured by LECO Corporation (St. Joseph, MI, USA). 
Proximate analysis was performed under nitrogen atmosphere ac-
cording to standard method, ASTM D7582-15. Ultimate analysis 
was performed using FLASH 2000 Elemental Analyzer, Thermo 
Fisher Scientific (Waltham, MA USA), and 5E-IRS3600 Automatic 
Infrared Sulfur Analyzer, CKIK (China). The elemental analyzer 
determined the content of carbon, hydrogen, and nitrogen whereas 
the sulfur analyzer quantified the amount of sulfur according to 
ASTM D 5373-16 and ASTM D4239-18, respectively. The oxygen 
content was approximated from the difference of all the elements 
and the ash from proximate analysis (i.e. O% = 100 – (C + H 
+ N + S + Ash)%). 

2.4. Experimental Design

Central composite design (CCD) of experiments was selected for 
this study to comprehend, model, and optimize the effect of environ-
mental factors on GCV and proximate analysis of low grade coal 
[33]. CCD is one of the most common types of statistical experimental 
design adopted in response surface methodology (RSM) to capture 
the effect of factors on response of interest [17, 18]. It provides 
the required information with fewer experiments. In case of three 
factors at five levels, the RSM required 24 experimental runs; eight 
at each of the central, factorial, and axial points in the experimental 
design space [19]. The central points provide the data regarding 
experimental error and reproducibility of the study. The suitable 
ranges of experimental factors, i.e. temperature, humidity, and air-
flow, were estimated from preliminary experiments. The prelimi-
nary experiments were done while changing one factor at a time. 
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For instance, the effect of temperature was preliminary assessed 
by measuring mass loss over time through varying temperature while 
keeping all the other factors constant. The temperature and humidity 
were studied at five levels, whereas, the airflow was varied at two 
levels as shown in Table 1. The temperature and humidity were 
modeled as numeric (continuous) factors whereas the air flow was 
modeled as a categorical (either low or high) factor. The airflow 
was studied at two levels because the experimental chamber did 
not allow airflow velocity above 0.5 m/s. Moreover, it was not identi-
fied as a statistically significant factor during preliminary ex-
perimental investigations. However, it was included in the ex-
perimental design due to its practical importance because coal is 
usually stored in open yard and/or transported via ship in open. 

The complete experimental design matrix exhibiting the combi-
nation of experimental factors and their responses is shown in 
Table 2. The response variables measured were GCV (kcal/kg), 
moisture (% mass fraction), fixed carbon (% mass fraction), volatile 
matter (% mass fraction), and ash (% mass fraction). The experiments 
were performed in random order to avoid systematic bias and mini-
mize the effect of uncontrolled factors [17]. The models were devel-
oped by fitting the polynomial equations to the experimental data. 
The statistical significance and adequacy of the models were eval-
uated by analysis of variance (ANOVA) and determining their re-
gression coefficients [19, 34].

3. Results and Discussion

3.1. Characterization of Low Grade Coal

The GCV of the low grade coal, before exposing to specified environ-
mental conditions shown in Table 2, was measured to be (5,327 
± 12) kcal/kg. The proximate analysis revealed 16.53% moisture, 
37.37% volatile matter, 38.03% fixed carbon, and 7.68% ash as 
shown in Fig. S1. The ultimate analysis showed the elemental compo-
sition of the coal was as follows: 55% carbon, 5% hydrogen, 1% 
sulfur, 30% oxygen, and 1% nitrogen, also shown in Fig. S2. The 
effects of temperature, humidity, and airflow on GCV and proximate 
analysis of coal were recorded in Table 2. In general, the decrease 
in temperature and increase of humidly adversely affected the GCV 
of the coal. It was observed that the increase in GCV was neither 
directly proportional to the increase in the temperature, nor, in-
versely proportional to the decrease in the humidity of the air. 
Instead, it was a function of their synergistic combination. For in-
stance, the highest GCV of the coal 5,986 kcal/kg (Exp. 12 in Table 
2) was observed at 29% R.H. and 36°C, whereas, it was expected 
at 20% R.H. and 28°C (Exp. 1 in Table 2). The close examination 
of the experimental data emphasized the requirement of the mathe-
matical modeling to accurately represent the effects of temperature 
and relative humidity on the GCV of the coal. 

Table 2. The Experimental Results Obtained from Various Experimental Setting of Environmental Factors

Exp. 

Factors Responses

Temp.
(°C)

Humidity
(% R.H.)

Airflow
(m/s)

GCV
(kcal/kg)

Moisture
(%)

F.C.
(%)

V.M.
(%)

Ash
(%)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

28
40
19
28
19
15
15
19
28
28
36
36
36
28
28
28
28
28
28
40
28
28
19
36

20
50
29
50
71
50
50
29
50
50
71
29
71
50
50
80
50
50
80
50
20
50
71
29

0.5
< 0.5
< 0.5

0.5
< 0.5

0.5
< 0.5

0.5
< 0.5

0.5
0.5
0.5

< 0.5
0.5

< 0.5
0.5
0.5

< 0.5
< 0.5

0.5
< 0.5
< 0.5

0.5
< 0.5

5,933
5,769
5,913
5,671
5,401
5,575
5,551
5,955
5,600
5,622
5,463
5,986
5,482
5,633
5,617
5,365
5,654
5,649
5,375
5,708
5,970
5,629
5,393
5,941

6.64
10.67
7.32
11.86
14.81
12.5
12.89
7.22
12.1
11.89
14.35
7.14
14.38
11.78
12.2
16.18
11.85
11.96
15.91
10.97
6.71
11.88
15.11
7.29

42.97
41.18
42.82
40.07
38.45
40.12
39.23
41.48
40.25
39.92
38.36
42.7
38.79
39.96
40.33
38.58
40.57
40.41
38.54
41.03
43.06
40.53
38.27
42.56

41.95
40.12
41.41
40.38
39.01
39.39
39.87
43.03
39.61
40.04
39.72
41.82
39.23
40.32
39.58
37.83
39.84
39.7
37.98
39.93
41.74
39.92
38.89
41.73

8.44
8.03
8.46
7.69
7.73

8
8.01
8.27
8.06
8.15
7.58
8.34
7.61
7.94
7.9
7.42
7.75
7.93
7.57
8.07
8.49
7.67
7.74
8.42
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The decrease (increase) in the GCV of the coal, upon increasing 
(decreasing) the humidity in the air, can be attributed to the physical 
adsorption (desorption) of water molecules on the surface of the 
coal [25–27]. The increased amount of adsorbed water leads to 
the increase in the moisture content of the coal and ultimately 
results in the decrease of the GCV. Once the moisture content 
of the coal changes, its entire proximate analysis diversifies 
as shown in Table 2. Therefore, the quadratic equations were 
fitted to the experimental dataset for GCV (kcal/kg), moisture 
(%), fixed carbon (%), volatile matter (%), and ash (%), obtained 
after exposing the coal to various environmental conditions 
shown in Table 2.

3.2. Model Fitting and ANOVA

The empirical models, representing the effect of environmental 
factors on gross calorific value and proximate analysis of coal, 
are shown in Table 3. Eq. (1) mathematically represents the varia-
bility in the GCV of the coal as directed by the change in temperature 
(A) and humidity (B). Although, the airflow (C) was also attempted 
to model but its impact was statistically insignificant [17]. Therefore, 
it was not included in the final model (Eq. (1)). The equation 
(Eq. (1)), in its coded terms, can be helpful in estimating the relative 
impact of environmental factors on the GCV of the coal [18]. The 
impact of a certain environmental factor on the GCV can be estimated 
from the magnitude and symbol (+/-) of the coefficients in the 
equation [19]. The cursory glance at the Eq. (1) shows that the 
term A (temperature) has a synergistic whereas the term B (humidity) 
has an antagonistic effect on the GCV of the coal, represented 
by positive and negative symbols [35]. The synergistic effect means 
the GCV increases with the increase of temperature and antagonistic 
effect refers to the decrease in GCV with the increase of humidity.  
Also, the magnitude of the impact of humidity is 3.3 (205.59/62.05) 
times more than that of temperature. Eq. (2) is essentially the same 
as Eq. (1) except that it is corrected for actual terms. Therefore, 

Eq. (2) can be directly used to estimate the GCV of coal at various 
temperatures and humidity (% R.H.). Similarly, the empirical mod-
els representing the relationship between environmental factors 
and moisture, fixed carbon, volatile matter, and ash are represented 
by Eqs. (3), (5), (7), (9) (coded terms) and Eqs. (4), (6), (8), (10) 
(actual terms). 

The statistical significance of the models was assessed by analysis 
of variance (ANOVA) [17, 18, 34, 36]. Table 4 shows the results 
of ANOVA, thereby, the statistically significant models and their 
terms. From Table 4, the F-value of 151.32 (along with p < 0.001) 
of the model representing the GCV of the coal implies that the 
model is significant. The linear terms of the model, A: temperature 
and B: humidity, are also highly significant (p < 0.001). Also, 
the interaction terms A2, B2, A2B, and AB2 are statistically significant 
at 94% confidence level. Only the term AB is statistically insignif-
icant [18]. It is considered in the model to correct the hierarchy 
of the model since the A2B and AB2 are significant model terms. 
The R2 (0.985), adjusted R2 (0.979), and predicted R2 (0.960) values 
are consistently above 0.95 indicating the goodness of fit of the 
model [17–19]. The values of R2 and adjusted R2 are quite close 
(difference = 0.006) which indicates the significance of terms in 
the model. The adjusted R2 decreases if the added terms cease 
to add value to the model. The high value of predicted R2 and 
its close agreement with the adjusted R2 depicts the high predict-
ability of the model. The high adequate precision value (34.85), 
signal to noise ratio, further adds to the confidence in the model 
[37]. The ANOVA results, therefore, statistically approve the 
model to represent the effect of environmental factors on the 
GCV of the coal. Similarly, the ANOVA analyses of the models 
developed to mathematically describe the effects of environ-
mental factors on moisture, fixed carbon, volatile matter, and 
ash are statistically significant with reasonable regression co-effi-
cient and adequate precision values as shown in Table 4. The 
experimental versus model predicted values are shown in Fig. 1. 

Table 3. Models Representing Gross Calorific Value and Proximate Analysis of Low Grade Coal

Response Model Coded /Actual Eq.

Gross Calorific Value

= 5,634.38 + 62.05A -205.59B + 11.5AB + 17.19A2 + 22.19B2 ― 51.41A2B ― 35.78AB2 coded (1)

= 8,091.59 ― 115.95 Temp. ― 64.52 Humidity + 2.67 Temp.*Humidity + 1.77 Temp.2 + 
0.30 Humidity2 ― 0.03 Temp.2*Humidity ― 0.01 Temp.*Humidity2 actual (2)

Moisture

= 11.94 ― 0.66A + 3.31B ― 0.135AB ― 0.24A2 ― 0.44B2 + 0.40 A2B + 0.50AB2 coded (3)

= -17.3115 + 1.11 Temp. + 0.80 Humidity ― 0.02 Temp.*Humidity ― 0.02 Temp.2 ― 
0.004 Humidity2 + 0.0002 Temp.2 Humidity + 0.0001Temp.* Humidity2 actual (4)

Fixed Carbon

= 40.26 + 0.51 A ― 1.58B ― 0.07AB + 0.03A2 + 0.23B2 ― 0.39A2B ― 0.33AB2 coded (5)

= 57.98 ― 0.79 Temp. ― 0.52 Humidity + 0.021 Temp.*Humidity + 0.01Temp.2 + 
0.003 Humidity2 ― 0.0002Temp.2 *Humidity ― 0.0001 Temp. *Humidity2 actual (6)

Volatile matter
= 40.13 + 0.08A ― 1.39B + 0.24AB coded (7)

= 44.94 ― 0.056 Temp. ― 0.10 Humidity + 0.0013Temp.*Humidity actual (8)

Ash
= 7.93 ― 0.008A ― 0.35B + 0.06A2 coded (9)

= 9.39 ― 0.05 Temp. ― 0.02 Humidity + 0.001 Temp.2 actual (10)
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Fig. 1(a) shows the distribution of experimental vs model pre-
dicted GCV distributed around perfect prediction line (dotted 
line, RSM = experimental). A high correlation (R2 = 0.9849) 
is indicative of the robustness of the model. Similarly, the models 
developed for moisture (R2 = 0.9911), fixed carbon (R2 = 0.9633), 

volatile matter (R2 = 0.8387), and ash (R2 = 0.8499) correlate 
well with the experimental data as shown in Fig. 1. The ANOVA 
(Table 4) and correlation (Fig. 1) statistically established the models 
to be used to explore the effect of environmental factors on GCV 
and proximate analysis.

Table 4. ANOVA Results and Adequacy of the Models for the GCV and Proximate Analysis of Low Grade Coal

Source Sum of Squares df Mean Square F-value p-value Significance Fit Statistics

GCV

  Model 9.12E+05 7 1.30E+05 151.32 < 0.0001 significant R2 0.985

  A-Temp. 30800.25 1 30800.25 35.76 < 0.0001 Adj. R2 0.979

  B-Humidity 3.38E+05 1 3.38E+05 392.56 < 0.0001 Pred. R2 0.960

  AB 1058 1 1058 1.23 0.2841 Adeq Precision 34.85

  A2 3781.25 1 3,781.25 4.39 0.0524

  B2 6,301.25 1 6,301.25 7.32 0.0156

  A2B 1,0571.42 1 1,0571.42 12.27 0.0029

  AB2 5,126.16 1 5,126.16 5.95 0.0267

Moisture

  Model 204.5964 7 29.23 255.3217 3.34E-15 significant R2 0.991

  A-Temp. 3.515625 1 3.515625 30.71075 4.47E-05 Adj. R2 0.987

  B-Humidity 87.7969 1 87.7969 766.95 6.03E-15 Pred. R2 0.973

  AB 0.1458 1 0.1458 1.273636 0.275724 Adeq Precision 47.967

  AÂ2 0.754661 1 0.75466125 6.592345 0.020656

  BÂ2 2.495711 1 2.49571125 21.80129 0.000257

  AÂ2B 0.631086 1 0.631086391 5.512856 0.032066

  ABÂ2 1.001651 1 1.00165111 8.749925 0.009255

Fixed Carbon

  Model 53.59998 7 7.657140476 62.22788 2.04E-10 significant R2 0.965

  A-Temp. 2.0449 1 2.0449 16.61845 0.000879 Adj. R2 0.949

  B-Humidity 19.84703 1 19.847025 161.2924 9.01E-10 Pred. R2R2 0.903

  AB 0.035112 1 0.0351125 0.285351 0.600559 Adeq Precision 22.195

  AÂ2 0.00968 1 0.00968 0.078667 0.782706

  BÂ2 0.65522 1 0.65522 5.324827 0.034725

  AÂ2B 0.596508 1 0.596507979 4.847688 0.042702

  ABÂ2 0.440448 1 0.440448176 3.579424 0.07674

Volatile Materials

  Model 31.60846 3 10.53615202 41.39228 9.13E-09 significant R2 0.861

  A-Temp. 0.101957 1 0.101957074 0.400548 0.533977 Adj. R2 0.840

  B-Humidity 31.03605 1 31.036049 121.9281 5.83E-10 Pred. R2 0.760

  AB 0.47045 1 0.47045 1.848208 0.189124 Adeq Precision 19.125

Ash

  Model 1.997528 3 0.66584259 44.57254 4.83E-09 significant R2 0.870

  A-Temp. 0.000941 1 0.000941274 0.06301 0.804361 Adj. R2 0.850

  B-Humidity 1.941546 1 1.941545663 129.9701 3.34E-10 Pred. R2R2 0.835

  AÂ2 0.055041 1 0.055040833 3.684519 0.0693 Adeq Precision 19.746
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3.3. Influence of Temperature and Humidity on GCV 

Fig. 2 shows the effects of environmental factors on GCV of the 
coal. The perturbation plot (Fig. 2(a)) shows the change in response 
as affected by the change in value of one factor at a time while 
keeping the other factors constant at reference point [17]. The 
reference point is coded 0 which corresponds to temperature (28°C), 
humidity (50% R.H.), and airflow (L, < 0.5 m/s) as shown in Table 
1. It should be noted that the airflow failed to contribute significantly 
in the models (Eq. (1)-(10)), therefore, its level doesn’t matter.  
The plot shows the increase in GCV from 5,590 kcal/kg to 5,714 
kcal/kg can be expected with the increase in temperature from 
19°C (coded = -1) to 36°C (coded = +1) while keeping the humidity 

constant at 50% from Table 1. Also, the 5,634 kcal/kg of GCV 
can be expected at reference point (coded = 0) where temperature 
is 28°C and humidity is 50% R.H. The perturbation plot shows 
the prominent negative impact of humidity on the GCV of the 
coal. The GCV appears to decrease by 7% (5,862 – 5,449) kcal/kg 
with the increase in humidity from 29 -71% R.H. increase in humid-
ity while keeping the temperature constant at 28°C. This decrease 
in GCV of coal, upon increasing the humidity, can be attributed 
to the increase in moisture content of the coal at high humidity. 
The moisture content of the coal was determined by proximate 
analysis and discussed in subsequent section. This increase in 
GCV with the increase of temperature and the decrease in GCV 

a b c

Fig. 2. (a) Perturbation plot and (b) Contour plot representing the impacts of temperature and humidity on the GCV of low grade coal.

a b c

d e

Fig. 1. Experimental vs RSM model predicted values of (a) GCV, (b) Moisture, (c) Fixed carbon, (d) Volatile matter, and (e) Ash. The dotted 
lines (RSM = Experimental) pass from the origin and represent the perfect prediction.
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with the increase of humidity are nearly linear as shown by the 
slopes of their respective lines in the perturbation plot. The contour 
plot (Fig. 2(b)) shows the GCV as affected by the temperature and 
humidity together, represented by the terms AB, A2B, AB2 in the 
model (Eq. (1)). The contours are not straight lines which shows 
the non-linear relationship between the GCV and combined effect 
of temperature and humidity. However, as shown in Fig. 2(a), (b), 
a pattern emerges indicating the gradual decrease in GCV with 
the increase of humidity at all studied temperatures. 

3.4. Influence of Temperature and Humidity on Proximate 
Analysis

Fig. 3 shows the effects of environmental factors on proximate 
analysis of coal. The perturbation plots (Fig. 3(a), (c), (e), (g)) repre-
sent the impacts of an individual environmental factor (temperature 
or humidity) on the moisture, fixed carbon, volatile matter, and 
ash while keeping the other constant at center point (coded 0). 
The contour plots (Fig. 3(b), (d), (f), (h)) exhibit combined effects 
of environmental factors on proximate analysis of coal. Fig. 3(a) 
shows the minor (1.34%) decrease in moisture content (12.37% 
to 11.03%) of the coal with the increase of temperature from 19°C 
to 36°C. Whereas, the change in humidity from (29-71) % R.H. 
significantly (6.65%) increased the moisture content of the coal 
from 8.18% to 14.83%. This increase in moisture content adversely 
affected the GCV of the coal (Fig. 2). The combined effect of temper-
ature and humidity on moisture content of the coal is shown by 
the contour plot in Fig. 3(b). Fig. 3(b) can be helpful in identifying 
the regions, shown by contour bands, where specific amount of 
moisture is most probable. For instance, the high moisture content 
(≥ 14%) can be expected at ≥ 60% R.H. and 18°C temperature, 

as well as, at 67% R.H. and 36°C temperature. Whereas, the low 
moisture content (≤ 8%) is probable only under 30% R.H. at 18°C 
or 36°C. Similarly, Fig. 3(c) shows the increase in fixed carbon 
content with the increase of temperature and decrease in fixed 
carbon with the increase of humidity. However, the effect of humid-
ity is more pronounced indicated by the steeper slope of the line 
representing humidity. The adjacent contour plot (Fig. 3(d)) shows 
that ≥ 42% FC can be found when the humidity is ≤31% (at 18°C), 
≤ 27% (at 27°C) or 36% (at 36°C). The volatile matter and ash 
content are affected by environmental factors in the similar fashion 
to that of fixed carbon. Fig. 3(e), (f) and Fig. 3(g), (h) show the 
effects of environmental factors on volatile matter and ash content, 
respectively. 

3.5. Optimization 
Experiments were conducted for the optimization of environmental 
factors to maximize the GCV of the coal. It will be helpful in 
designing the coal storage yard to derive maximum heat energy 
from the coal. The significance of optimization is to determine 
the environmental conditions to for pre-drying the low grade coal 
for use in place of high grade coal in power plants. The optimization 
was performed around a single parameter; i.e. GCV maximization 
while scanning through various combinations of environmental 
factors. The desirability function was employed to perform numer-
ical optimization which was developed by Myers et al. [17]. The 
details about the desirability function can be found in our earlier 
works [34, 37]. Fig. 4(a) shows the ramp plots indicating the optimum 
environmental factors (red dots) resulting in the maximum GCV 
(blue dot) of the coal and corresponding proximate analysis (grey 
dots). The location of optimum parameters is shown by a flag 
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Fig. 3. Perturbation plots and contours representing the impacts of temperature and humidity on proximate analysis of low grade coal. (a), (b) 
Moisture, (c), (d) Fixed carbon, (e), (f) Volatile matter, and (g), (h) Ash.
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in the response surface plot in Fig. 4(b). It is shown that a GCV 
of 6,013 kcal/kg could be achieved by keeping the sample at 35°C 
and 20% R.H. The experiment was performed at optimized con-
ditions which yielded the GCV of 5,970 kcal/kg, i.e. 0.7% less 
than the predicted value. It exhibits the very good predictability 
of the model. Table S1 (in supporting information) shows the com-
parison of RSM model predicted (Eq. (1)-(10)) values compared 
with the experimental values of GCV and proximate analysis. The 
% error indicates the reasonable prediction of GCV and proximate 
analysis of the coal by the RSM models. The models, therefore, 
can be reliably used to predict the GCV, moisture content, fixed 
carbon, volatile matter, and ash content of the low grade coal at 
various environmental conditions.

4. Conclusions

Response surface methodology (RSM) is a useful tool to model, 
predict, and optimize the change in the GCV and proximate analysis 
of low grade coal with the change of the environmental conditions. 
It was observed that the GCV and proximate analysis of the low 
grade coal significantly varies with the environmental conditions 
such as temperature and humidity. Approximately 621 kcal/kg 
difference in GCV was observed as the temperature and humidity 
were varied between 28 to 36 (°C) and 29 to 80 (% R.H.), respectively. 
The considerable decrease in GCV of the coal (with the increase 
of humidity) can be attributed to the increase in moisture content 
of the coal. The moisture content of the coal increased from 7.14 
to 16.18 (%) as the humidity increased from 29 to 80 (% R.H). 
resulting in the decrease of GCV from 5,986 to 5,365 (kcal/kg). 
The optimized environmental conditions were predicted, and later 
experimentally verified, to maximize the GCV of low grade coal.  
It was observed that the GCV of the low grade coal can be increased 
to ~6,000 kcal/kg (from ~5,300) by storing it at optimized environ-
mental conditions, i.e. 35°C and 20% R.H. A fifteen hours’ exposure 
of the pulverized coal, at optimized environmental conditions, may 
increase ≤ 13% GCV of a coal by reducing its moisture content 

by ≤ 56%. This study can be helpful in managing the GCV of 
low grade coals and tailoring them for intended use. 

Acknowledgment

This work was supported by the Korea Institute for Advanced 
of Technology (KIAT) grant funded by the Korea Government 
(MOTIE) (P0008421, The Competency Development Program for 
Industry Specialist). The authors would like to express sincere 
gratitude to Intertek Testing Services Korea Ltd. for supporting 
all experimental and analytical facilities. 

Author Contributions

S.P. (Ph.D student) designed, carried out the experiments, analyzed 
the experimental results and lead in draft writing the manuscript. 
Q.Z. (Post-doc) supported statistical data analysis and paper writing. 
H.P. (Professor) was in charge of overall direction, planning and 
final approval. All authors provided critical feedback and helped 
shape the research, analysis and manuscript. 

References

1. Adiansyah JS, Haque N, Rosano M, et al. Application of a life 
cycle assessment to compare environmental performance in 
coal mine tailings management. J. Environ. Manage. 
2017;199:181-191.

2. Osborne DG, Gupta SK. Industrial uses of coal. Coal Handb. 
Towar. Clean. Prod. 2013;1:3-30.

3. Dudley B. BP statistical review of world energy. BP Statistical 
Review, London, UK ; 2019.

4. Luo Z, Agraniotis M. Low-rank Coals for Power Generation, 
Fuel and Chemical Production. 

5. Zhang D, Jackson PJ, Vuthaluru HB. Low-Rank Coal and 

ba

Fig. 4. (a) Ramp plots indicating the position of factors (red) and response (blue) at optimized conditions. (b) Response surface representing

the location of optimized point (flag) where the highest GCV can be achieved. 



Environmental Engineering Research 26(2) 200070

9

Advanced Technologies for Power Generation. Impact Miner. 
Impurities Solid Fuel Combust. 2005;45-64.

6. Kim H, Kim B, Byun SH. Optimization of calorie compensation 
of fuel coal for power plant control. In: 37th Annual Conference 
of the IEEE Industrial Electronics Society; 7-10 Nov 2011; 
Melbourne. p. 902-905.

7. Mesroghli S, Jorjani E, Chehreh Chelgani S. Estimation of gross 
calorific value based on coal analysis using regression and artifi-
cial neural networks. Int. J. Coal Geol. 2009;79:49-54.

8. Majumder AK, Jain R, Banerjee P, et al. Development of a new 
proximate analysis based correlation to predict calorific value 
of coal. Fuel 2008;87:3077-3081.

9. Chelgani SC, Hart B, Grady WC, et al. Study relationship between 
inorganic and organic coal analysis with gross calorific value 
by multiple regression and ANFIS. Int. J. Coal Prep. Util. 
2011;31:9-19.

10. Matin SS, Chelgani SC. Estimation of coal gross calorific value 
based on various analyses by random forest method. Fuel 
2016;177:274-278.

11. Llorente MJF, García JEC. Suitability of thermo-chemical correc-
tions for determining gross calorific value in biomass. 
Thermochim. Acta. 2008;468:101-107.

12. Patel SU, Jeevan Kumar B, Badhe YP, et al. Estimation of gross 
calorific value of coals using artificial neural networks. Fuel 
2007;86:334-344.

13. Montgomery WJ. Standard Laboratory Test Methods for Coal 
and Coke. Anal. Methods Coal Coal Prod. 1978;191-246.

14. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculat-
ing HHV from proximate analysis of solid fuels. Fuel 
2005;84:487-494.

15. Mott R, Spooner C. The Calorific Value of Carbon in Coal: 
The Dulong Relationship. Fuel 1940;19:226-231.

16. Given PH, Weldon D, Zoeller JH. Calculation of calorific values 
of coals from ultimate analyses: theoretical basis and geo-
chemical implications. Fuel 1986;65:849-854.

17. Myers RH, Montgomery DC, Anderson-Cook CM. Response 
Surface Methodology : Process and Product Optimization Using 
Designed Experiments. John Wiley & Sons; 2016. 

18. Anderson MJ, Whitcomb PJ. RSM simplified: optimizing proc-
esses using response surface methods for design of experiments. 
Productivity press; 2016. 

19. Anderson MJ, Whitcomb PJ. DOE Simplified: Practical Tools 
for Effective Experimentation. Productivity press; 2015. 

20. Anupam K, Sikder J, Pal S, et al. Optimizing the cross-flow 
nanofiltration process for chromium (VI) removal from simu-
lated wastewater through response surface methodology. 
Environ. Prog. Sustain. Energy 2015;34:1332-1340.

21. Anupam K, Sharma AK, Lal PS, et al. Preparation, character-
ization and optimization for upgrading Leucaena leucocephala 
bark to biochar fuel with high energy yielding. Energy 
2016;106:743-756.

22. Chiou B Sen, Valenzuela-Medina D, Bilbao-Sainz C, et al. 
Torrefaction of almond shells: Effects of torrefaction conditions 
on properties of solid and condensate products. Ind. Crops Prod. 
2016;86:40-48.

23. Lee JW, Kim YH, Lee SM, et al. Optimizing the torrefaction 
of mixed softwood by response surface methodology for biomass 
upgrading to high energy density. Bioresour. Technol. 
2012;116:471-476.

24. Pinto F, Hidalgo-Herrador JM, Paradela F, et al. Coal and waste 
direct liquefaction, using glycerol, polyethylene waste and waste 
tyres pyrolysis oil. Optimisation of liquids yield by response 
surface methodology. J. Clean. Prod. 2020;255:120192.

25. Pang S, Bhattacharya S, Yan J, et al. Advances in Coal Drying. 
Dry. Biomass, Biosolids, Coal 2019;135-164.

26. Willson WG, Walsh D, Irwin W. Overview of low-rank coal 
(LRC) drying. Coal Prep. 1997;18:1-15.

27. Karthikeyan M, Zhonghua W, Mujumdar AS. Low-rank coal 
drying technologies - Current status and new developments. 
Dry. Technol. 2009;27:403-415.

28. Jangam S V., Karthikeyan M, Mujumdar AS. A critical assess-
ment of industrial coal drying technologies: Role of energy, 
emissions, risk and sustainability. Dry. Technol. 2011;29:395-407.

29. Sun Y, Xu C, Xin T, et al. A comprehensive analysis of a thermal 
energy storage concept based on low-rank coal pre-drying for 
reducing the minimum load of coal-fired power plants. Appl. 
Therm. Eng. 2019;156:77-90.

30. Edward KL, Nenad S, Harun B, et al. Use of coal drying to 
reduce water consumed in pulverized coal power plants. 2006. 

31. ASTM D 7582-15. Standard Test Methods for Proximate Analysis 
of Coal and Coke by Macro Thermogravimetric Analysis. ASTM 
Int. 2015. 

32. Merwe D, Campbell QP. An investigation into the moisture 
absorption properties of thermally dried South African fine 
coal. J. South. Afr. Inst. Min. Metall. 2002;102,417-420.

33. Omulo G, Banadda N, Kabenge I, et al. Optimizing slow pyrolysis 
of banana peels wastes using response surface methodology. 
Environ. Eng. Res. 2019;24:354-361.

34. Zaib Q, Ahmad F. Optimization of Carbon Nanotube Dispersions 
in Water Using Response Surface Methodology. ACS Omega 
2019;4:849-859.

35. Anupam K, Deepika, Swaroop V, et al. Antagonistic, synergistic 
and interaction effects of process parameters during oxygen 
delignification of Melia dubia kraft pulp. J. Clean. Prod. 2018; 
199:420-430.

36. Zaib Q, Jouiad M, Ahmad F. Ultrasonic Synthesis of Carbon 
Nanotube-Titanium Dioxide Composites: Process Optimization 
via Response Surface Methodology. ACS Omega 2019;4:535-545.

37. Venkatesan M, Zaib Q, Shah IH, et al. Optimum utilization 
of waste foundry sand and fly ash for geopolymer concrete 
synthesis using D-optimal mixture design of experiments. 
Resour. Conserv. Recycl. 2019;148:114-123. 


