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ABSTRACT
Contaminants of emerging concern (CECs) including endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care product 
chemicals (PPCPs) have recently received more attention because of their occurrence in water bodies and harmful impacts on human health 
and aquatic organisms. Triclosan is widely used as a synthetic broad-spectrum antimicrobial agent due to its antimicrobial efficacy. However, 
triclosan detected in aquatic environment has been recently considered as one of CECs, because of the potential for endocrine disruption, the 
formation of toxic by-products and the development of cross-resistance to antibiotics in aquatic environment. This comprehensive review focuses 
on the regulations, toxicology, fate and transport, occurrence and removal efficiency of triclosan.  Overall, this review aims to provide better 
understanding of triclosan and insight into application of biological treatment process as an efficient method for triclosan removal.
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1. Introduction

A public health concern about triclosan has recently emerged 
due to its widespread occurrence in wastewater, surface waters, 
sediment, soils, and even in urine, human blood, and breast milk 
[1-10].  Triclosan has been incorporated into numerous personal 
care, household, and industrial products since 1965, due to its 
effectiveness as a broad-spectrum antimicrobial agent [11, 12].  
Global production of triclosan was estimated to exceed 1,500 tons 
per year, of which more than 43% of the production was used 
in the US and Europe [10, 13].

Once triclosan is released into the environment, triclosan can 
be potentially transformed into more toxic compounds, like chlor-
odioxins, chlorophenol, chloroform, p-hydroquinone, and 2,4-di-
chlorophenol when interacted with strong oxidants or under UV 
light [14]. Furthermore, trace levels of triclosan could promote 
the development of cross-resistance to antibiotics [15], and cause 
adverse health effects within the ecosystem [16]. Triclosan is also 
a weak androgenic and estrogenic compound [17-19].

Through commercial or residential washing of equipment out-
doors with triclosan-containing products, triclosan may be trans-
ported into the stormwater drain systems; untreated triclosan is 
released directly into creeks, rivers, and ultimately to the Bay. 

Moreover, wastewater is a major source of triclosan to the environ-
ment due to incomplete removal of triclosan by conventional waste-
water treatment processes.  Researchers have been actively seeking 
effective treatment strategies for triclosan and this task is 
challenging.  Many advanced physical/chemical processes like 
UV irradiation, ozonation, sorption, advanced oxidation processes 
[10, 20-28] have shown effectiveness for triclosan removal. 
Biodegradation of triclosan by many fungi, bacterial consortia, 
activated sludge and pure strains has also been reported [29-36], 
suggesting that biological removal of triclosan could be an alter-
native treatment method for triclosan removal.  

2. Chemical Property and Regulations

Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol; CAS 3380-34-5) 
is a nonionic, lipophilic, and chlorinated phenolic compound that 
has been used as a synthetic broad-spectrum antimicrobial agent, 
since the Ciba Specialty Chemicals (Basel, Switzerland) first produced 
triclosan in 1965 [11, 12]. Due to its effective antimicrobial ability, 
triclosan has been widely incorporated into numerous personal care 
and household products, and industrial products such as deodorants, 
soaps, skin cream, toothpastes, laundry detergents, socks, sport 
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Fig. 1. Chemical structure of triclosan, bisphenol A, diethylstilbestrol, and thyroxine.

footwear, toys, fabrics, computer keyboards, countertops, and many 
different plastic kitchenware all over America, Europe and Asia. 
Triclosan has been globally produced over 1,500 tons per year, 
especially,  more than 300 tons and 350 tons of triclosan are 
yearly used in the US and in Europe, respectively [10, 13]. 

Triclosan is referred to as halogenated biphenyl ether due to 
functional groups of ether and phenol. Alternative names for triclo-
san include 2,4,4'-trichloro-2'-hydroxydiphenyl ether, 5-chloro-2- 
(2,4-dichlorophenoxy)phenol or trichloro-2'-hydroxydiphenyl ether. 
In addition, triclosan has commercial names such as Irgasan 
DP-300, Lexol 300, Ster-Zac, Cloxifenolum, Microban in plastics 
and clothing, and Biofresh in acrylic fibers [7]. The chemical for-
mula for triclosan is C12H7Cl3O2 and its molecular weight is 289.55 
g/mol. Triclosan is white to off-white crystalline powder with a 
hardly detectable phenolic odor. Triclosan is thermally stable; 
it has a melting point between 56-60˚C and a boiling point between 
280‐290˚C [37]. Triclosan is relatively non-volatile and non-soluble 
in water (solubility: 10 mg/L at 20˚C; log Kow = 4.76), but readily 
soluble in a wide range of organic solvents [37, 38]. The chemical 
structure of triclosan (Fig. 1) is similar to several emerging con-
taminants such as polybrominated diphenyl ethers (PBDEs), poly-
chlorinated biphenyls (PCBs), dioxine, biphenol A, diethyl-
stilbestrol (synthetic nonsteroidal estrogen), and thyroxine (thyroid 
hormone) [39-41]. Triclosan has been banned in Canada and Japan. 
In the European Union, triclosan is categorized as a dangerous 
irritant to the environment and aquatic life [42]. The use of triclosan 
in food contact plastics was banned in September 2009 in Germany. 
It has been advised to consumers not to use antibacterial products 
in Finland and Denmark [43]. In the U.S., the non-pesticide use 
of triclosan is regulated by the U.S. Food and Drug Administration 
(FDA), while the pesticide use of triclosan is regulated by the 
Environmental Protection Agency (EPA). However, the regulation 
for triclosan in surface waters has not been established. 

3. Toxicology of Triclosan 

Triclosan has a low level of toxicity to humans and other mammals 
[38, 44]. Triclosan showed a low acute toxicity in animal studies 
that the dermal LD50 (median lethal dose) is 5,000 mg/kg for rats, 
and the oral LD50 are 4,000 mg/kg for mice, 4,500-5,000 mg/kg 
for rats, and over 5,000 mg/kg for dogs [37]. One study in male 
mice also reported that triclosan showed a low acute toxicity (LD50 > 

1,000 mg/kg) [45]. However, several studies reported that triclosan 
is acutely and chronically toxic to several different types of aquatic 
life such as fish and algae in the range of 34.2-200 μg/L [46-49]. 
Ricart et al. [50] reported that triclosan caused an increase in 
bacterial mortality with a no effect concentration (NEC) of 0.21 
μg/L and it was more toxic to bacteria than algae.  As shown 
in two fish studies, the acute toxicity of triclosan depended on 
the different life stages of species, especially, showing more toxic 
effects on juveniles [51, 52].

3.1. Triclosan as a Class of Endocrine Disrupting Compounds 
(EDCs)

Several studies reported that triclosan is a thyroid disruptor in 
animals due to the structural similarity of triclosan to thyroid hor-
mones such as thyroxine [39-41, 53]. Damage caused by disrupting 
thyroid systems may affect normal growth and development of hu-
mans, especially, the development of children’s brain. Using frogs 
that have a primary thyroid hormone-signaling mechanism which 
is almost identical to human’s, several studies showed that low 
levels of triclosan interfered with thyroid‐mediated developmental 
processes of tadpoles into frogs [39, 54, 55]. Further, triclosan may 
disrupt other critical hormone systems in mammals due to the 
structural similarity to anthropogenic estrogens (bisphenol A and 
diethylstilbestrol), and the anti-estrogen (2,3,7,8 tetra-
chloro-p-dioxin) [56]. An in-vitro study showed that triclosan exerted 
androgenic and estrogenic activities in human breast cancer cells 
[17]. In-vivo fish studies suggested that triclosan act as anti-estrogen 
[57] or weak androgen [18]. Several male rat studies demonstrated 
that triclosan lowered serum levels of testosterone and several ster-
oidogenic enzyme activities [58, 59]. One study also reported that 
a triclosan metabolite may have a weak estrogenic activity [47].

3.2. Development of Antibiotic Cross-resistance

Several studies raised a concern that triclosan may promote the 
development of cross-resistance to antibiotics in microorganisms 
and lead to the emergence of bacteria resistant to antibiotics in 
the environment. While antimicrobial agents are generally not 
intended to destroy particular cellular constituents in bacteria,  
antibiotics attack specific cellular target to inhibit the growth of 
cell and the synthesis of cell wall or cell contents [60]. Because 
triclosan kills bacteria in a similar way as antibiotics by inhibiting 
the active sites of the specific bacterial fatty acid biosynthetic 
enzyme, enoyl‐acyl carrier protein reductase, which is necessary 
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to build and reproduce cell membranes [61], bacteria that become 
resistant to triclosan may have the potential of antibiotic resistance. 
A laboratory study found the cross-resistance between triclosan and 
ciprofloxacin (oral antibiotic) in Pseudomonas aeruginosa [62]. There 
is no evidence that triclosan can cause a mutation in bacteria. However, 
since triclosan kills normal bacteria that are susceptible to triclosan 
in the environment, mutated bacteria that are resistant to triclosan 
are more likely to survive and be reproduced in the triclosan con-
taminated environment. A laboratory study found that a number of 
different strains of mutant bacteria that are resistant to triclosan also 
showed the resistance to a number of clinical-use antibiotics [63]. 

4. Source, Occurrence, Fate and Transport in 

the Environment

Urban waters are vulnerable to anthropogenic contamination by 
human activities and could be polluted with a long-term impact 
on the urban aquatic ecosystem. Urban wastewater stream can be 
one of major pathways for emerging organic contaminants including 
triclosan and these contaminants could be carried in surface and 
subsurface in urban catchments in association with migration, sorp-
tion, transformation processes such as photo-degradation, chemical 
or biological transformation  in urban water systems (Fig. 2) [64].

Since triclosan is primarily a water-borne contaminant, it is 
detected ubiquitously in aquatic environments at some of the high-
est concentrations among 95 organic wastewater pollutants [3]. 
Disposal and usage of triclosan-laden products resulted in triclo-
san-containing wastewater. About 96% of household and consumer 
products containing triclosan flows down the drain [65]. Of the 
triclosan eventually entering wastewater treatment plants 
(WWTPs), 79% is biodegraded, 15% is adsorbed onto biosolids, 
and the remaining 6% is discharged continuously into the receiving 
surface water [1, 10]. Triclosan can be also released into the environ-
ment via the application of biosolids to an agricultural field and 
irrigation of treated wastewater contaminated with triclosan [10, 
66, 67]. Consumer product wastes containing triclosan, and sludge 
from wastewater treatment plants are mostly sent to landfill for 
disposal, and triclosan can be released into the environment 

Fig. 2. Life cycle of triclosan in the aquatic environment [64].

through landfill leachate [68]. In addition, through commercial 
or residential washing of equipment outdoors with triclosan-con-
taining products, runoff containing triclosan goes into stormwater 
drain systems without treatment, and flows directly into creeks, 
rivers and eventually to the bay or oceans. 

Triclosan concentrations in wastewater influents in Korea, 
United States, Europe, China, and Japan range from 148 to 785, 
245 to 86,200, 142 to 2,301 and 55 to 1,000 ng/L, respectively 
[64, 69, 70]. Triclosan in wastewater effluents in Korea, United 
States, Europe, China, and Japan are detected at the concentrations 
between 0-127, 50-5,037, 10-2,210, 10.9-1,023, and 30-360 ng/L, 
respectively [1, 2, 10, 64, 69, 71-74]. In surface river water, triclosan 
was detected in Korea, United States, Europe, China, and Japan 
with reported values varying from 0 to 149, 3.5 to 34.9, < 0.2 
to 285, 2.5 to 478 and 11 to 31, respectively [64, 69, 70, 75]. A 
recent USGS study also reported that approximately 58% of 139 
U.S. streams were contaminated with triclosan at the concentrations 
ranging from 0.14 to 2.3 μg/L [3].  Triclosan was found in lake-, 
marine-, and river-sediments at the concentrations in the range 
from 37 to 53 ng/g, from 0.27 to 130.7 ng/g, and from 4.4 to 35.7 
ng/g, respectively [10, 76, 77]. Lapworth et al. [78] reported triclosan 
concentrations found in groundwater ranging between 7-2,110 ng/L. 
The ranges of triclosan concentrations detected in WWTP influents, 
WWTP effluents, and surface river water in the different countries 
are briefly summarized in Table 1.  

Triclosan concentrations in activated sludge have been detected 
in the range of 500 to 15,600 μg/kg of dry weight [71, 79]. Triclosan 
in biosolids have been detected at the concentrations between 90 
and 30,000 μg/kg [4, 79-82]. Triclosan was also detected at concen-
trations ranging from 69 to 833 ng/g in agricultural soil amended 
with biosolids [4].  Furthermore, biosolid application to an agricultural 
field and the irrigation of treated wastewater containing triclosan 
contributed to triclosan detection in vegetation contributed from [66, 
67].  One field study reported that triclosan in soybean plants was 
detected at the concentrations between 36 and 80 ng/g of dry weight 
from irrigation treatment samples, and between 13 and 136 ng/g 
of dry weight from biosolids application treatment samples [83]. 

In addition to triclosan detection in the environment, triclosan 
was detected in 75% of 2,517 human urine samples at concen-
trations of 2.4-3,790 μg/L [84] and in the 61% of 90 urine samples 
from age 6-8 year-old girls [85]. Triclosan was also found in human 
blood [6, 8, 41, 86]; for example, triclosan was detected in the 
range between 4.1-19 ng/g in blood serum samples [41]. Triclosan 
in the range of 100-2,100 μg/kg of lipid was detected in the 96.8% 
of 62 samples of breast milk [9] and concentrations of triclosan 
in breast milk ranged from 0.018 to 0.95 ng/g [8]. Moreover, triclosan 
was found in indoor dusts (~ 1.1 μg/g) [87], and foods (0.02-0.15 
ng/g) such as dairy products, meat, fish and egg [88].

Triclosan released into the environment can be transformed 
into more toxic products through photodegradation and/or 
biodegradation. Under anaerobic conditions, methylation of triclo-
san into methyl-triclosan in surface waters and wastewater has 
been reported [89]. Due to the lipophilic property of meth-
yl-triclosan (Kow = 5.2), it may bioacummulate in wildlife and 
human. A fish study found the concentrated methyl-triclosan in 
fatty tissue [90] and another study reported that methyl-triclosan 
has acute toxicities in the marine bacterium Vibrio fischeri at low 
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Table 1. Occurrence and Concentrations of Triclosan in WWTP Influent, 
WWTP Effluent and Surface water in the Different Countries

Location
Concentration

(ng/L)
Reference

WWTP influent Korea 148-460 [69]

Korea 280-745 [69]

Korea 247-785 [70]
United States 245-86,200 [64]

Europe 52-21,900 [64]

China 142-2,301 [64]
Japan 55-1,000 [64]

WWTP effluent Korea 0-29.6 [69]

Korea 0-127 [69]
Korea 1.3-32 [73]

Korea 5.6-16 [74]

United States 50-5,370 [64]
Europe 10-2,210 [64]

China 10.9-1,023 [64]

Japan 30-360 [64]
Surface river water Korea 0-46.1 [69]

Korea 1-29 [75]

Korea 16-82 [75]
Korea 79-149 [70]

United States 3.5-34.9 [64]

Europe < 0.2-285 [64]
China 2.5-478 [64]

Japan 11-31 [64]

levels [91]. A great concern about the rapid transformation of triclosan 
into 2,8‐dichlorodibenzo-p-dioxin (2,8-DCDD) during the photo-deg-
radation in natural water and wastewater has been raised [14, 92-96] 
because dioxin is highly carcinogenic and can cause such severe 
health problems as affecting reproductive abilities and weakening 
the immune system [97]. Triclosan can be transformed into chlor-
ophenols (2,4‐dichlorophenol and 2,4,6‐trichlorophenol) in the pres-
ence of chlorine [98-100] or chloramines [101]. These chlorophenols 
are listed as the priority pollutants by EPA, and are potentially 
toxic and stable in the environment [98]. Recent studies have shown 
that triclosan in tap/surface water or in common triclosan-containing 
hygienic products reacts with residual chlorine to form potentially 
carcinogenic chloroform [99-101]. 

5. Treatment Technologies for Triclosan Removal

5.1. Physical/Chemical Removal of Triclosan

A granular activated carbon (GAC) treatment system was effective 
by decreasing 2,032 ng/L of triclosan concentration in influent 
to 102 ng/L in effluent [102]. Powdered activated carbon achieved 
95% of triclosan reduction during drinking water treatment [103]. 
Different sorbents such as kaolinite and montmorillonite are effec-
tive for triclosan removal [28]. Advanced membrane technologies 
such as nanofiltration/reverse osmosis membranes are effective 

Table 2. Triclosan Removal Efficiencies by Different Treatments

Treatment
Removal

efficiency (%)
Reference

Granular activated carbon 95% [102]

Powdered activated carbon 95% [103]
Ultrasonication 60% [105]

Conventional Sand filtration 0% [106]

UV irradiation 93% [26]
Ozonation 58-100% [23]

UV/H2O2 > 95% [107]

UV/TiO2 75-82% [108]
TiO2 30% [108]

UV/Fe (II) 100% [109]

Electo-oxidation > 90% [110]
Activated sludge 95-98% [111]

Trickling filter 86-97% [111]

Rotating biological contactors 58-96% [111]
Primary treatment 32% [71]

for triclosan removal, but more expensive than other treatment 
options [104]. 60% of initial triclosan in  domestic wastewater 
was removed by ultrasonication [105]. However, conventional sand 
filtration showed no removal of triclosan [106]. 

Triclosan can be effectively removed by chemical oxidation 
processes including UV irradiation, ozonation, UV/hydrogen per-
oxide-advanced oxidation process and chlorination.  One study 
reported that 93% of initial triclosan was removed by UV irradiation 
in wastewater [26].  Ozonation can rapidly oxidize triclosan during 
wastewater treatment [23]. UV/hydrogen peroxide-advanced oxida-
tion process showed high removal efficiency of triclosan [107].  
Triclosan was degraded during chlorination at neutral pH (7.3-8.3) 
[98]. UV light in combination with TiO2 achieved a 75-82% reduc-
tion in triclosan, whereas 30% of triclosan was removed by TiO2 
as a sole oxidant [108]. Triclosan was almost completely removed 
within 60 min by UV/Fe (II) [109]. Oxidants such as manganese 
oxides (δ-MnO2 and MnOOH), titanium dioxide, permanganate 
(Mn (VII)), and Fe (III)-saturated montmorillonite have shown to 
oxidize triclosan effectively [20-24, 105]. A recent study demon-
strated > 99.9% of degradation efficiency via electrochemical deg-
radation at Ti/SnO2-Sb/Ce-PbO2 anodes [110]. 

5.2. Biological Removal of Triclosan 

Several studies reported triclosan removal in wastewater treatment 
plants (WWTPs) by biological treatment process [10, 71, 111, 112]. 
The removal efficiency of triclosan is dependent on the operations 
and configurations of WWTPs. Thompson et al. reported that overall 
removal of triclosan ranged between 95-98% (activated sludge), 
86-97% (trickling filter), and 58-96% (rotating biological contactors) 
[111].  McAvoy et al. also found that triclosan was removed with 
rates of 96%, 71%, and 32% for activated sludge plants, trickling 
filter plants, and primary treatment plants, respectively [71]. In 
general, activated sludge treatment enables the greatest removal 
of triclosan.  One study estimated that 79% and 15% of triclosan 
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Fig. 3.  Triclosan biodegradation pathway by a wastewater microorganism [35].

was removed by biodegradation and adsorption onto biosolids, 
respectively, and then the remaining 6% of triclosan was discharged 
into the receiving water [10]. 

Several studies demonstrated the aerobic biodegradation of tri-
closan by wastewater enrichment consortium [29, 30], nitrifying 
activated sludge [32], wastewater microorganisms (Sphingomonas 
sp. Rd1 and Sphingomonas sp. PH-07) [29, 34], soil microorganisms 
[31], and two white rot fungi (Trametes versicolor and Pycnoporus 
cinnavarinus) [33]. A recent study demonstrated the 72% of max-
imum triclosan biodegradation yield at 7.5 mg/L of triclosan concen-
tration by Aspergillus versicolor [113]. 0.15-0.18 μg/mL of triclosan 
was degraded cometabolically by all these known strains and 
cultures.  The two soil bacteria, Pseudomonas putida TriRY and 
Alcaligenes xylosoxidans subsp. denitrificans TR1 utilized triclosan 
as a carbon source and degraded it within 4 days and 10 days,  
respectively [31]. One study suggested that a diphenyl-ether degrad-

ing bacterium, Sphingomonas sp. PH-07 used 2,3-dioxygease en-
zyme to cometabolically degrade 25% of 10 mg/L triclosan in 8 
days and proposed a possible degradation pathway for triclosan 
[34]. The degradation pathways of triclosan by a new wastewater 
isolate, Sphingopyxis strain KCY1, and several oxygen-
ase-expressing bacteria  have elucidated (Fig. 3) [35, 36]. The phylo-
genetic diversity of triclosan-utilizing bacteria was investigated 
in activated sludge systems using DNA-based stable-isotope prob-
ing technique [114]. An ammonia-oxidizing bacterium (AOB), 
Nitrosomonas europaea were found to cometabolically degrade 
45% of 1 mg/L triclosan within 24 hours [32].  This study also 
demonstrated that ammonia monooxygenase in Nitrosomonas euro-
paea was involved in triclosan biodegradation.

While triclosan in aerobic condition shows relatively rapid deg-
radation; triclosan is slowly degraded or persistent under anaerobic 
condition. Anaerobic degradation of triclosan was not observed 
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in 70 days [115]. Similarly, a study reported remaining of 91% 
of 14C-triclosan after incubation under anaerobic conditions for 
147 days [106]. One study reported that anaerobic triclosan bio-
degradation was not observed, but 75% of triclosan removal by 
aerobic activated sludge after 150-hr incubation [116].

6. Conclusion and Recommendation

Triclosan is a common synthetic antimicrobial agent incorporated 
in numerous industrial and personal care products. However, the 
detection of triclosan in the environment has raised a public health 
concern, because the exposure of triclosan may promote the devel-
opment of the cross-resistance to antibiotics, cause endocrine dis-
ruption to aquatic microorganisms, and potentially form more toxic 
by-products.  Wastewater is one major source for environmental 
triclosan due to its incomplete removal by conventional wastewater 
treatment processes. Many advanced physical/chemical processes 
have shown effective removal for triclosan. However, these meth-
ods may be costly and potentially generate more toxic by-products. 
Approximately 80% of triclosan loading in wastewater treatment 
plants (WWTPs) can be rapidly biodegraded by microorganisms 
[29-34], suggesting that the biological removal of triclosan could 
be an inexpensive and effective alternative for triclosan removal.  

Therefore, the knowledge of the microbiology with respect to 
triclosan biodegradation by investigating microorganisms capable 
of degrading triclosan, their degradative enzymes, and degradation 
pathways for triclosan is essential for developing an effective 
treatment strategy for triclosan removal in wastewater. Additional 
research about microorganisms in term of their degradation ability 
toward triclosan is required. Known microorganisms that are capa-
ble of degrading other xenobiotics with the similar chemical struc-
ture to triclosan, and that exhibit the metabolism or cometabolism 
of a wide variety of these toxic pollutants could be potential 
candidates as a bioaugmentation agent for biological treatment 
systems. 

Furthermore, sequencing the complete genome of micro-
organisms capable of degrading triclosan will provide insights 
into factors regulating the unique enzymatic system for either 
metabolic or cometabolic degradation of triclosan. The avail-
ability of the genome sequence will significantly accelerate the 
analysis of the genes and enzymes involved in triclosan 
degradation. Eventually, the information obtained from the ge-
nome sequences of triclosan-degrading microorganisms would 
be useful to develop advanced biological treatment processes 
for triclosan removal. 

It is also important to note that microcosm studies of triclosan 
biodegradation in true environment is needed to provide compre-
hensive information of degradation kinetics at ambient concen-
trations by indigenous microorganisms present in natural con-
ditions for the representative of the true environment such as 
contaminated hazard waste sites, wastewater or receiving surface 
waters by considering the interactions with other species in in-
digenous microbial community, oxygen, nitrogen sources, cell den-
sities, inducing substrates and nutrient conditions, pH and 
temperature. 
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