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Abstract 

The goal of this study was to produce a novel nano-scale material from nitrogen fertilizer industry byproduct 

(nNFIB) and assess its capability to remediate Cu contaminated wastewater and soil. The novel nNFIB was 

produced using planetary mono mill and characterized. Equilibrium and kinetics studies of Cu sorption by nNFIB 

were performed in batch system. The effects of a variety of factors, including pH, coexisting ions and adsorption 

time on Cu adsorption were investigated. Furthermore, Cu sequestration mechanism onto nNFIB was investigated 

using sequential extraction technique and Fourier transform infrared (FTIR) spectra before and after nNFIB 

adsorption. The Cu sorption equilibrium and kinetics data were successfully described by Langmuir and first-order 

models, respectively. The calculated maximum Cu(II) adsorption capacity (qmax) of nNFIB (100 mg g−1) was four 

times higher than qmax of bulk NFIB. Copper removal by nNFIB was quite fast (around 86%) in the first 5 min and 

gradually slowed down until achieved 100% removal at equilibrium time. The FTIR spectra and Cu fractionation 

data in biosolid-amended soil demonstrated that Cu sequestration in contaminated water and soil is strongly related 

to CaCO3 of nNFIB. The overall findings show the potential use of nNFIB as a best management practice for Cu 

removal from wastewater and Cu stabilization in contaminated biosolid-amended soils. 
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1. Introduction 1 

Anthropogenic activities have polluted the environment with excess amounts of heavy metals. 2 

Rapid industrialization and urbanization have discharged huge amounts of heavy metals into 3 

ecosystems and metals such as copper are introduced mainly by electroplating and metal mining 4 

industries and water pipe work [1]. Because copper is very toxic at low concentration, copper-5 

contaminated wastewater must be treated before discharging to protect the environment. 6 

Exposure to excessive amounts of copper can cause serious health problems because of its bio-7 

accumulation and high toxicity [2, 3]. United State Environmental Protection Agency (USEPA) 8 

reported that the permissible limit of copper ions in industrial effluents is 1.3 mg/L while World 9 

Health Organization (WHO) stated that copper ions content in drinking water should not exceed 10 

1 mg/L [4, 5]. Therefore, the development of low-cost, yet efficient and environment-friendly 11 

technologies to remediate Cu contaminated water and soil is urgent to protect and preserve 12 

public and ecosystem health. 13 

Remediation of Cu contaminated water and soil can be performed by different 14 

technologies including chemical/electro-chemical processes, ion exchange, reverse osmosis, 15 

coagulation, and adsorption [6, 7].The removal of metal ions better accomplished by adsorption 16 

due to its safety, simplicity and the advancement of adsorption technology. However, the newly 17 

introduced adsorbents such as active carbon, grapheme oxide and mesoporous silica are 18 

economically unattractive [8]. 19 

In recent years, sustainable resources have become a greater concern and research has 20 

focused on the production of low cost sorbents from industrial byproducts such as eggshells, 21 

oyster shells, water treatment residuals, Fly ash and iron slags and the ability of these byproducts 22 
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to remove aqueous pollutants have also been tested [9-11]. There is a wealth of recent articles 1 

regarding industrial and agricultural byproducts as a precursor [12]. However, information is 2 

lacking on sorbents produced from calcite-based waste materials generated from nitrogen 3 

fertilizer industry as a precursor materials and the feasibility of using it in water and soil 4 

remediation. Worldwide, millions of tons of calcite-based solid waste from nitrogen fertilizer 5 

industry are generated each year. Surprisingly, no information or systematic study regarding the 6 

use of NFIB for Cu
2+

 removal has been reported. Thus, the overall purpose of this work is to 7 

determine the ability of calcite-based materials generated from nitrogen fertilizer industry 8 

byproducts to remediate contaminated soil and water.  9 

The specific objectives of the current study were to: (1) produce and characterize a novel 10 

nanomaterials derived from nNFIB and examine the feasibility of using such materials as simple 11 

yet effective adsorbents for aqueous copper removal and immobilization (2) optimize the various 12 

parameters governing Cu
2+

 removal such as pH, contact time, and coexisting ions (3) investigate 13 

Cu sequestration mechanism onto nNFIB. For the best of authors' knowledge there are no other 14 

articles in existence concerning the use of nanoparticles derived from nitrogen fertilizers industry 15 

byproducts for remediation of copper contaminated soil and water. 16 

 17 

2. Material and Methods 18 

2.1. Preparation and Characterization of nNFIB  19 

The NFIB was obtained from nitrogen fertilizer company, Alexandria, Egypt. The NFIB samples 20 

were collected, air-dried, ground and passed through two different sieves having pore diameters  21 

of 2 mm (mNFIB) and 51µm (µNFIB). Nanoparticles of NFIB were produced using subsamples 22 
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of µNFIB ( < 51 µm) and Planetary Mono Mill according to the method of Elkhatib et al. [13]. 1 

The crystalline nature of nNFIB was determined using Bruker AXS D8 Advance X-ray 2 

Diffractometer. The particles size, morphology and elemental composition of nNFIB were 3 

investigated using scanning electron microscope equipped with energy dispersive spectroscopy 4 

(SEM-EDS) (INCAx-Sight, Oxford Instruments, UK). Surface area of nNFIB was determined 5 

using autosorb iQ surface area analyzer (Quanta chrome, USA). 6 

 7 

2.2. Sorption Isotherms and Kinetics 8 

Copper (II) sorption equilibrium studies were performed on mNFIB and nNFIB at normal pH 9 

(7.2) using 0.01M KNO3 and Cu (II) concentrations ranging from10-500 mg/L. The NFIB–Cu 10 

mixtures (in replicate) were equilibrated on a shaker for 24 h, centrifuged for 10 min at 4000 rpm, 11 

filtered through a membrane filter (0.45µm)and the filtrate was analyzed for Cu by Atomic 12 

absorption spectroscopy(AAS). Seven sorption isotherm models were assessed for their ability to 13 

fit the sorption data [14]. The sorbed Cu by nNFIB was examined via SEM equipped with an 14 

EDS (INCAx-Sightmodel 6587, Oxford Instruments, UK). 15 

Batch sorption kinetic experiments were conducted with Cu at room temperature (25 ± 16 

2°C). A known dose of nNFIB (150 mg) was mixed with 20 mL of Cu (II) solutions with initial 17 

concentration of 500 mg/L in 50 mL centrifuge tubes. The mixtures (in replicate) were shaken 18 

for different time intervals (5 min - 24 h) using an end-over-end shaker at 3 different pH levels 19 

(pH 5, 7 and 9). The pH was kept constant by automatic titration with HCl or NaOH. The Cu -20 

nNFIB suspensions were centrifuged and then filtered using 0.45µm Milliporefilter. Atomic 21 

absorption spectrometry (AAS, contrAA300) was used to analyze Cu (II) concentrations in the 22 
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supernatant solutions. Stock standard Cu (NO3)2 solution (1000 mgL
-1

) was used to prepare Cu(II) 1 

solutions. The kinetics of Cu sorption on the nNFIB samples were investigated by fitting the 2 

sorption data to power function, parabolic diffusion, first order, and Elovich kinetic models [9]. 3 

 4 

2.3. Spiking Biosolids and Incubation Experiment 5 

Biosolids samples originally contained 12.80 mg Cu kg
-1

 were collected and spiked with Cu 6 

nitrate at a rate of 300 mg Cu kg
-1

,the soil Cu concentration limit recommended by the USDA 7 

[15]. The Cu-spiked biosolids samples were incubated under aerobic conditions at room 8 

temperature (25 ± 2
o
C) and 70% water holding capacity for 30 d and then were mixed with 2 kg 9 

of sandy soil. Four different rates of nNFIB (0, 0.25, 0.5, and 1%) were added to soil -biosolids 10 

mixtures, placed in plastic bags, and incubated for 20 d at room temperature (25 ± 2
o
C). During 11 

the incubation period, moisture content of the mixtures was maintained at 70% of water holding 12 

capacity (WHC).  13 

 14 

2.4. Copper Fractionation 15 

The procedure of Tessier et al. [16] was used to fractionate Cu in soil-biosolids mixtures before 16 

and after application of nNFIB. The used procedure fractionates Cu into five fractions: 17 

Exchangeable (Exch), carbonates (Carb), Fe–Mn oxides (FeMnO), organic matter (OM) and 18 

Residual (Res). Copper in the fractions was determined using AAS, contr AA300.  19 

 20 

 21 

 22 
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2.5. Statistical Analysis 1 

The experimental data were statistically analyzed using Microsoft Excel and COSTAT programs 2 

Fisher's least significant difference at level of significance P ≤ 0.01 was used to separate 3 

differences among the treatment means [17]. 4 

 5 

3. Results and Discussions  6 

3.1. Characterization of Nanoparticles From nNFIB 7 

The XRD patterns of bulk NFIB and nanoscale NFIB (Fig. S1) demonstrate a strong 8 

characteristic peak at 2θ = 30
o
 indicating that both samples are mainly containing high 9 

percentage (93%) of calcite (CaCO3). The SEM and EDX analyses of both samples confirmed 10 

XRD results and ascertained that the main component of bulk and nanoscale NFIB is calcite (Fig. 11 

1(a), (b)). The SEM image of nNFIB sample before Cu saturation (Fig. 1(b)) showed the 12 

spherical shape of nanoparticles and the representative single particle sizes( < 100 nm) in 13 

diameter. The SEM image of Cu saturated nNFIB, also revealed that adsorbed Cu has formed a 14 

coating layer on nNFIB surface (Fig. 1(c)) and the presence of Cu peak (3.70% ± 0.76) has been 15 

confirmed by EDX spectrum of Cu saturated nNFIB (Fig. 1(c)) .Meanwhile, EDX analysis 16 

showed a decrease in  calcium percentage from 93.4 to 91.3% of the total elements in nNFIB as a 17 

result of Cu ions addition (Fig. 1(b), (c)).  18 

 19 

 20 

 21 

 22 
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 1 

Fig. 1. Scanning electron microscopy (SEM) image and energy dispersive X-ray (EDX) elemental 2 

distribution of (a) mNFIB, (b) nNFIB and (c) the Cu-loaded nNFIB.  3 

 4 
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3.2. Sorption Isotherm 1 

Sorption isotherm studies were performed to determine the maximum sorption capacity for the 2 

three different particle sizes of NFIB (m NFIB, µ NFIB and n NFIB). Copper sorption isotherms 3 

(Fig. 2(a)) have shown continuous increase of sorbed Cu by nNFIB, uNFIB and mNFIB with 4 

increasing Cu concentration from 5 to 500 mg L
-1 

.The Cu adsorption capacity of nNFIB was 5 

higher than that of  uNFIB and mNFIB. Reliable prediction of Cu adsorption parameters 6 

including maximum sorption capacity was further analyzed using 7 sorption isotherms models 7 

[13, 18] (Table 1). Langmuir and Temkin models best described Cu sorption data in the order: 8 

Langmuir > Temkin as evidenced by the high determination coefficient (R
2
) and low standard 9 

error of estimate (SE) values of these models (Table 1) . 10 

The superiority of Langmuir model to describe the adsorption behavior of Cu(II) on 11 

nNFIB, uNFIB and mNFIB (Fig. 2(b), Table 1) indicates the involvement of monolayer 12 

adsorption in the Cu(II) removal process by nNFIB,uNFIB and mNFIB. Based on Langmuir 13 

model, the calculated maximum Cu(II) adsorption capacity (qmax) of nNFIB is 100 mg g
−1

 which 14 

is four times  higher than that of Bulk NFIB. This is not surprising since the BET specific surface 15 

area of nNFIB (225.4 m
2 

g
−1

) is much higher than that of the bulk NFIB sample (8.8 m
2 

g
−1

). 16 

High surface area of nanoparticles greatly enhances surface reactivity and the adsorption 17 

capacity of nNFIB [17].Therefore, producing NFIB in nanoscale will greatly enhance its 18 

capability to remove Cu (II) from contaminated wastewater.  19 

 20 

 21 

 22 
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Fig. 2. (a) Copper sorption isotherm onto mNFIB, uNFIB and n NFIB materials. (b) Langmuir 18 

sorption isotherms.  19 
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Table 1. Equilibrium Model Constants and Standard Error of Estimate (SE) and Determination 1 
Coefficients (R

2
) for Copper Adsorption by the Three Different Particles Sizes of NFIB 2 

 3 
 4 

n NFIB µ NFIB m NFIB Parameter Models 

8.119 ×103 5.519×103 5.009×103 KF (mL g-1) Freundlich 

qe = KFCe
1/n 

0.413 0.294 0.255 1/n 

0.78 0.62 0.49 R2 

0.78 0.88 0.98 SE 

100000 30000 25000 qmax (μgg1) Langmuir 

qe = qmax(KL Ce /1 + KLCe) 
0.33 0.29 0.25 KL (L mg-1) 

0.94 0.96 0.99 R2 

1.36 ×10-5 6.69 ×10-5 7.4×10-5 SE 

2.50 ×104 2.00 ×104 1.67 ×104 qmax (μgg1) Elovich 

qe/ qmax = KE Ce exp(-qe/ qmax) 
1.341 1.135 1.647 KE (L mg-1) 

0.50 0.49 0.25 R2 

0.412 0.329 0.463 SE 

26.313 9.044 6.275 ∆Q(k J mol−1) Temkin 

θ = RT/∆Q lnK0Ce 
28.838 24.062 20.337 K0(L g−1) 

0.98 0.97 0.98 R2 

0.051 0.106 0.116 SE 

5.134 -0.680 -3.221 W(kJ mol−1) Fowler–Guggenheim(FG) 

KFGCe=  θ/1- θ exp(2 θ w/RT) 
0.718 2.228 1.467 KFG(L mg−1) 

0.97 0.80 0.94 R
2
 

0.348 0.109 0.221 SE 

0.489 1.449 1.476 k1(L mg
−1

) Kiselev 

k1Ce= θ/(1- θ) (1+kn θ) 
2.570 1.034 1.913 kn 

0.97 0.95 0.80 R2 

2.679 3.012 5.122 SE 

0.498 1.077 1.270 K1(Lmg−1) Hill–deBoer 

K1Ce= θ / (1 − θ) exp(θ/ (1- θ)–K2θ/RT) 
3.704 12.717 12.164 K2 (kJ mol

−1
) 

0.94 0.98 0.99 R2 

0.132 0.249 0.088 SE 



 
 
 
 

 11  
 
 
 

qe (mg g
−1

) is Cu adsorbed per gram of adsorbent, Ce (mg L
−1

) is equilibrium Cu concentration in solution,  Kf is a constant related to adsorption 1 
capacity of the adsorbent (Lmg

−1
), n is a constant, qmax (mg g

−1
)  is the maximum adsorption capacity of the adsorbent, KL (Lmg

−1
) is Langmuir 2 

constant related to the  free energy of adsorption, θ is fractional coverage, R is the universal gas constant (kJ mol
−1

 K
−1

), T is the temperature 3 
(K), ∆Q is (−ΔH) the variation of adsorption energy (kJmol

−1
), K0 is Temkin constant (Lmg

−1
), KFG is Fowler-Guggenheim constant (Lmg

−1
), W is the 4 

interaction energy between adsorbed molecules (kJmol
−1

), K1 is Kiselev constant (Lmg
−1

), Kn is a constant of complex formation between 5 
adsorbed molecules, K1 is Hill-de Boer constant (Lmg

−1
), and K2 (kJmol

−1
) is a constant related to the interaction between adsorbed molecules. A 6 

positive K2 means attraction between adsorbed species and a negative value means repulsion. 7 
 8 

3.3. Effect of Adsorbent-Sorbate Contact Time 9 

The effects of contact time (5 min to 24 h) on Cu (II) adsorption by nNFIB at three different pH 10 

values (5, 7, and 9) are presented in Fig. 3(a). Over 86% of Cu (II) was removed by nNFIB in the 11 

first 5 min and then slowed down to reach 100% removal at the end of the 24 h (equilibrium 12 

time). The fast Cu removal is attributed to the high proportion of calcium carbonate (more 93%) 13 

in nNFIB and with time the availability of adsorption active sites rendered non available. 14 

Increasing the initial pH of aqueous solutions from 5 to 9 increased the removal efficiency of Cu 15 

(II) by nNFIB (Fig. 3). With increasing pH values (pH > 7), the surface charges of nNFIB 16 

became more negative and that  may cause a greater ion-exchange reaction between Cu(II) and 17 

Ca(II) and greater sequestration of Cu(II) at the nNFIB surface [19]. These results are also 18 

supported by other researchers [20, 21].   19 

Copper adsorption data at three pH values (5, 7, and 9) were kinetically analyzed and 20 

fitted to Elovich, first-order, Parabolic diffusion, and power function models [22, 23] (Table S1). 21 

The power function and first-order kinetics models best described copper (II) adsorption on 22 

nNFIB in the order: power function model > first-order as evidenced by their highest R
2 

and 23 

lowest SE values (Table S1, Fig. 3). The adsorption rate (Ka) of the power function model 24 

increased from 5.71 × 10
4
 to 6. 70 × 10

4
 min

-1
 with the increase in the system pH from 5 to 9 25 

(Table S1) which indicates that Cu sorption is preferably at high pH values. 26 

 27 
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Fig. 3. (a) Effect of contact time on the removal of Cu (II) by nNFIB at 3 different pH values.  34 
(b) Power function model for Cu (II) adsorption by nNFIB. 35 
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 1 

3.4. Mechanism of Copper (II) Removal by nNFIB   2 

The FTIR Spectra of nNFIB was generated in the frequency range 350 – 4400 cm
- 1

 before and 3 

after copper adsorption to elucidate Cu (II) adsorption mechanism (Fig. 4). The broad band at 4 

3451 cm
-1

 in the FTIR spectrum of nNFIB is assigned to the OH stretching vibrations of the 5 

hydroxyl molecule [24]. The vibration bands at 1439 cm
-1

, 875 cm
-1

, 712 cm
-1

 and 409 cm
-1

 6 

indicate plane bending vibration of carbonate [25-29]. After Cu(II) adsorption by nNFIB, the 7 

band at 3451 cm
-1

 was decreased in the intensity and shifted to lower wave number (3437 cm
-1

). 8 

In addition, the intensities of the bands corresponded to amorphous calcium carbonate at 875 and 9 

712 cm
−1

 clearly increased and the CO3
--
 symmetric stretch at 1398 cm

-1
 shifted to 1439cm

-1
. 10 

These shifts are typical for Cu
2+

complexation by OH group and precipitation as copper(II) 11 

carbonate. Therefore, FTIR analysis demonstrated the involvement of OH and CO3
- -

 groups in 12 

Cu retention by nNFIB and suggested that Cu (II) adsorption by nNFIB at high pH ( > 7) may 13 

take place via OH bonding colloidal insoluble hydroxides, Cu (OH)2and surface precipitation as 14 

copper(II) carbonate. 15 

 16 

3.5. Copper Removal in Single and Multi-Element System by nNFIB 17 

The effect of coexisting ions on Cu removal by nNFIB was studied by using two competing 18 

cations (Cd and Pb) at concentrations equal to Cu concentration. Copper removal by nNFIB was 19 

markedly affected by the presence of Cd (II) and Pb (II) at160 mgL
-1

 concentration (Fig. 5). The 20 

Cu removal efficiency of nNFIB decreased by 17.6% (from 98.6% to 81.0%), 5.0% (from 98.8% 21 

to 93.8), 6.1% (from 99.2% to 93.1%), and 4.9% (from 99.5% to 94.6) at Cu concentrations 5, 20, 22 
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, respectively. The competitive effect of Cd (II) and Pb (II) for the adsorption 1 

sites available to Cu (II) may attributed to some properties of the metal ion such as : (1) electro-2 

negativity, (2) charge to radius ratio, (3) abilities to form hydroxo complexes, and (4) preferred 3 

adsorption site on the adsorbent [30-32].  4 

 5 

 6 
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 8 

 9 

 10 

 11 

 12 

Fig. 4. Fourier transmission infrared (FTIR) spectra of nNFIB and Cu-loaded (II) nNFIB. 13 
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 22 

Fig. 5. Removal of copper (II) in single and multi-element system by nNFIB. 23 
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3.6. Effect of nNFIB Application on Cu (II) Sequestration in Contaminated Soil 1 

The effect of nNFIB application on distribution of Cu fractions in contaminated biosolids 2 

amended soil is presented in Fig. 6. The percentages of copper fractions in nNFIB unamended 3 

soil followed the order: Res > FeMnO > OM > Exch > Carb. Application of nNFIB to the 4 

contaminated biosolids amended soil at rates of 0.25, 0.50 and 1.0% greatly reduced the Exch-Cu 5 

and Res fractions and simultaneously increased carbonate fractions.  In the soil amended with 1.0% 6 

nNFIB, ~ 37% of Cu (II) was associated with the carbonate fraction, whereas organic (13.66%), 7 

and exchangeable (6.46%) fractions represent the minor association. nNFIB application 8 

significantly increased Cu association with the carbonate fraction and consequently enhanced Cu 9 

(II) immobilization in the soil studied. Therefore, it is suggested that the use of nNFIB for Cu 10 

sequestration could geochemically stabilize heavy metals in contaminated soils. 11 

To further investigate Cu sequestration mechanism onto nNFIB treated soil, FTIR spectra 12 

of biosolids amended sandy soil before and after nNFIB application were performed. The FTIR 13 

spectrum of the biosolids amended sandy soil (Fig. 7) displays prominent bands at 3406, 1435, 14 

876 and 1033cm
-1

 which are attributed to OH bonded water, stretching and vibration modes of 15 

carbonate groups, and Si-O-Si bending vibrations, respectively [20, 28, 34]. Application of 16 

nNFIB to biosolids amended sandy soil has resulted in a shift of OH bonded water band at 17 

3406cm
-1

 to a higher wave number (3419 cm
-1

) and a reduction of its intensity due to the strong 18 

interaction between OH groups and Cu ions. Meanwhile, the intensity of the band attributed to 19 

calcite at 1433 cm
-1

 greatly increased as a result of increasing CO3
2-

content in the nNFIB 20 

biosolids amended sandy soil sample due to nNFIB application (Fig. 7). The FTIR results have 21 
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clearly shown that OH and CO3
2- 

groups are the main functional groups responsible for Cu (II) 1 

sorption by nNFIB [35-37]. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 
Fig. 6. Percentage of Cu fractions in biosolids amended soil after nNFIB application at rates of 0, 0.25, 11 
0.5, and 1% by weight. 12 
 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

Fig. 7. Fourier transmission infrared (FTIR) spectra of Cu-loaded sandy soil and amended with biosolids 23 

before and after nNFIB application. 24 
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4. Conclusions 1 

A novel nano-structured adsorbent (nNFIB) derived from the low cost waste of nitrogen fertilizer 2 

industry was developed. The high surface area of nanoparticles greatly enhanced surface 3 

reactivity and Cu(II) adsorption capacity of nNFIB. The capability of NFIB nanoparticles to 4 

remove Cu(II)  reached 4 times higher than that of bulk NFIB. First-order kinetics model was 5 

best suited to the kinetics data. Copper adsorption was affected by the pH of solution and the 6 

background ions. FTIR results demonstrated the important rules of hydroxyl and carbonate 7 

groups in sequestering Cu (II) from contaminated soils and water. In brief, it can be stated that 8 

nNFIB is a promising adsorbent to remove Cu from wastewater and to stabilize Cu in 9 

contaminated biosolid-amended soils. 10 
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