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Abstract 
Nowadays, with the burgeoning development of economy, CO2 emissions increase rapidly in China. It has become 
a common concern to seek effective methods to forecast CO2 emissions and put forward the targeted reduction 
measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with 
regularized extreme learning machine (RELM) to make CO2 emissions prediction based on the data from 1978 to 
2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation 
function (PACF) is utilized to determine the lag phases of historical CO2 emissions so as to improve the rationality 
of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is 
applied to forecast CO2 emissions. According to the modeling results, the proposed model outperforms a single 
RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic 
model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time 
than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and 
computing efficiency for CO2 emission prediction. 
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1. Introduction 

After over 30 y of the economic reforms in China, there emerges a remarkable rise with average 

annual GDP growth rate at nearly 10% [1]. However, the burgeoning development of economy 

inevitably results in the large increase in energy consumption and hence CO2 emissions. China 

overtook the United States as the world’s leading emitter of CO2 in the year of 2006 [2]. To 

respond to the cause of serious global warming, China commits to continue taking effective 

measures for CO2 emission control during the 13th Five-Year Plan, thus the carbon emission 

peaking can be reached by 2030. Accordingly, it’s of great significance to focus on CO2 

emissions prediction research, which provides a valuable reference for practical measures of 

CO2 emission reduction.  

 A report published by the National Petroleum Council in the United States predicted a 

50%-60% growth in total global demand for energy by 2030 [3]. Energy consumption is the 

main source of CO2 emissions [4], thus a lot of researchers have paid attention to this area. 

Say and Yucel [5] studied the relationship between total energy consumption and total CO2 

emissions through regression analysis, which displayed a strong relationship between these 

two factors. In [6], the energy consumptions were modeled using artificial neural network 

(ANN) based on economic and demographic variables. The results showed that the 

correlation coefficients between ANN predictions and actual energy consumptions were 

higher than 90%, which indicated a high reliability of ANN for forecasting future energy 

consumption. Azadeh and Tarverdian [7] presented an integrated algorithm based on genetic 

algorithm, computer simulation and design of experiments using stochastic procedures for 
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monthly electrical energy consumption prediction. In [8], Utgikar and Scott explored the 

possible causes of inaccuracy in energy forecasting which could provide a better 

understanding of prediction process and design a strategy for reducing the errors in energy 

prediction. Aydin [9] utilized multiple linear regression analysis to study the relationship 

between CO2 emissions and energy-related factors where correlation analysis were employed 

to determine the influential factors. In [10], an approach was proposed for coal-related CO2 

projections in future planning, wherein coal-related CO2 emissions were modeled by trend 

analysis. Feng and Zhang [11] conducted a case study to predict the effects of different 

development alternatives on future energy consumption and carbon emission, namely under 

three scenarios: business-as usual, basic-policy and low-carbon. The results provided insights 

into the energy future and highlighted possible steps to develop a sustainable low-carbon city. 

At this stage, researches on carbon emissions can be mainly divided into two parts: 

discussion on influential factors and study on prediction models. For the influential factors, 

existing studies related to this part include the methods such as index decomposition means 

[12-13] and input-output structural analysis [14-15]. Andres and Rustemoglu [16] introduced 

refined laspeyres index method into the research of relationships between CO2 emissions and 

four identified factors in Brazil and Russia for the period 1992-2011 to explore the 

determinants of accelerating CO2 emissions. Li et al. [17] applied logarithmic mean divisia 

index method (LMDI) to decompose the change in carbon emissions into some influencing 

factors caused by urbanization. The results revealed that energy intensity contributed largely to 

carbon emission reduction in Hubei Province. Li et al. [18] estimated the agricultural CO2 
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emissions in China during the period of 1994 to 2011 and applied LMDI as the decomposition 

technique. The results illustrated that agricultural subsidy acts to reduce CO2 emissions 

effectively and has increased in recent years. Wang et al. [19] proved that economic 

development, energy structure and low energy efficiency are three main driving factors of 

increasing CO2 emissions in China based on a modified production-theoretical decomposition 

analysis approach. Ahmed [20] studied the relationship between CO2 emissions, economic 

growth, urbanization and trade openness by two steps: (a) Autoregressive distributed lag 

bounds test was carried out to explore whether there existed cointegration between the 

variables. (b) The relationship between the factors was analyzed according to the long-run and 

short-run dynamics. Based on the last research, Ali et al. [21] added the factor of energy 

consumption to examine its dynamic impact on CO2 emissions. Deng et al. [22] combined 

structural decomposition analysis and logarithmic mean divisia index method to study the 

drivers behind CO2 emissions in Yunnan province. This technique could take both production 

and final demand into account in less-developed regions. Cointegration and Granger causality 

were adopted by Tang and Tan [23] to examine the relationship among CO2 emissions, energy 

consumption, foreign direct investment and economic growth in Vietnam. They pointed out 

that there existed long-run equilibrium among these variables. Lin et al. [24] evaluated the 

relation between CO2 emissions and industrial growth through an autoregressive distributed lag 

bounds testing and cointegration analysis. The results suggested that there was a reduction 

potential of CO2 emissions in the Chinese manufacturing sector without intimidating industrial 

growth. Wang et al. [25] applied a two-level decomposition model based on Kaya identity to 
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uncover the main influential factor for CO2 emissions. The results indicated that energy 

intensity reduction was conducive to low-carbon economic development. Based on combining 

correlation analysis, gray correlation analysis and principal component regression analysis, 

Bian et al. [26] integrated data envelopment analysis with energy structure adjustment to 

measure CO2 emission reduction in China. The findings showed that it was a practical way to 

decrease CO2 emissions through the abatement of coal consumption and development of 

non-fossil energy. 

 For the forecasting techniques, CO2 emissions are predicted mainly through the 

relationship models between carbon emission and its influencing factors based on different 

scenarios. Kang et al. [27] employed STIPRAT model to examine the impact of energy- related 

factors on CO2 emissions and tested the spillover effects of per capita CO2 emissions through a 

spatial panel data technique. This study provided some policy advice on reduction of China’s 

CO2 emissions. Based on STIPRAT model, Sheng and Guo [28] extended this basic method to 

be a panel error-correction one which can dynamically take the influence of urbanization 

changes on total CO2 emissions into consideration. Their findings indicated that the rapid 

urbanization augmented CO2 emissions both in the short-run and long-run. Wu et al. [29] 

utilized a multi-variable grey model to forecast CO2 emissions on the basis of energy 

consumption, urban population and economic growth. Pérez-Suárez et al. [30] compared 

environmental kuznets curve with logistic growth model in CO2 emission prediction 

considering a sample of 175 countries. The results showed that extended environmental kuznets 

curve tended to outperform the forecasting accuracy of the latter one. Vector autoregressive 
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model was adopted by Xu and Lin [31] to identify the drivers of CO2 emissions in China’s iron 

and steel industry. The findings revealed that energy efficiency played a significant part in CO2 

emission reduction. Baareh [32] introduced four input data including oil, natural gas, coal and 

primary energy consumption to build ANN for CO2 emission prediction. The results proved 

ANN was a powerful and efficient tool in forecasting CO2 emissions. A hybrid model that 

combined ANN with bees algorithm for analyzing CO2 emissions in the world was presented 

by Behrang et al. [33]. Two steps were carried out: (a) The bees algorithm was applied to 

determine the indicators. (b) World CO2 emissions were forecasted up to the year of 2040 based 

on ANN. 

 With the propositions and prosperities of artificial intelligent algorithms, traditional neural 

networks offer a new way of CO2 emission prediction. Despite their strong nonlinear mapping 

ability and parallel processing capability, the drawbacks of these methods are the slow learning 

speed, complex training parameters and easily tapping into the local minimum. Huang et al. [34] 

introduced extreme learning machine (ELM) to solve the stated issue of conventional training 

methods. With the advantages such as fast convergence speed, high training accuracy and no 

manual tuning, the ELM model has been successfully applied to forecasting problems in 

many fields, such as wind speed [35], electricity load [36], oil price [37] and so on. However, 

ELM is based on empirical risk minimization principle which easily causes over-fitting 

phenomenon. Therefore, in order to guarantee the global optimization and generalization 

ability, RELM model, in which the calculation process of Moore-Penrose generalized inverse 
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and the introduction of the regularization factor are added to ELM, is used for CO2 emission 

prediction in this paper. 

 In general, based on the aforementioned studies, it can be found that the appropriate 

selection of influential factors has momentous influence on the prediction results of CO2 

emissions. However, most studies only put emphasis on the impact of these factors on the total 

CO2 emissions and ignore the correlation to each other. In reality, there exist overlaps of 

information contained in the data, thus, the computational efficiency is greatly depressed due to 

the complex network. Therefore, principal component analysis (PCA) is employed in this 

paper to reduce the dimension of pre-select influential factors with retention of information to 

the utmost so that the network structure can be simplified and operation efficiency and 

prediction accuracy can be significantly improved. 

 Therefore, compared with past works, there exist two main differences: (i) RELM, a new 

kind of neural networks, is firstly introduced into CO2 emission prediction, which overcomes 

the disadvantages of slow learning speed, the need of numerous training samples, over-fitting 

and so on in the previous researches. (ii) The correlations among influential factors are paid 

close attention in this paper, thus PCA is utilized to manipulate them for dimension reduction 

to improve the computational efficiency and forecasting precision. The rest of this paper is 

organized as follows: Section 2 presents a brief description of PCA, ELM and RELM; Section 3 

displays the framework of the proposed novel approach in this study; Section 4 elaborates the 

selection of input; Section 5 validates the established model through a case study; Finally, the 
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paper is concluded and several concrete mitigation measures have been further put forward in 

Section 6. 

 

2. Methodology 

2.1. Principal Component Analysis  

PCA was initially introduced in the discussion of non-random variables by Pearson [38] and 

extended to random one by Hotelling [39]. This method can effectively reduce the 

dimensionality of a data set on the premise of retaining main variance. It is achieved by 

applying orthogonal transformation to convert the data into a new set of indexes, also called 

PCs, that meet: (i) Each PC is a linear combination of original variables. (ii) PCs are 

uncorrelated to each other. The first PC accounts for the most information of original index and 

the largest proportion of variability which its predecessors have not explained is interpreted by 

each subsequent one. In this paper, the PCA calculation was performed on SPSS v.19.0 and the 

accumulative explained variation of the selected PCs should be more than 0.85. 

 

2.2 Extreme Learning Machine 

The ELM is a novel machine learning algorithm for single layer feed-forward neural networks. 

The main nature of ELM is the random initialization of the input weights and hidden biases 

without iterative adjustments during the learning process, thus the optimal output weights can 

be quickly obtained based on the predefined network structure [40]. Besides its fast learning 

speed, ELM also avoids numerous problems such as local minima and learning rate faced by 
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other ANNs [41]. The topological structure of ELM network is illustrated in Fig. 1. The 

specific procedures of ELM are described as follows: 

 Given a training data set with N  samples 1{( , )}N
i i ix y = , the ELM model with L hidden nodes 

are expressed as  

1
( ) ,      1, 2...,

L

i i j i j
i

g w x b y j Nβ
=

⋅ + = =∑
                          

(1) 

where jx  is the input pattern, jy  is the desired output, iw R∈  is the randomly assigned input 

weight vector between the ith hidden node and input nodes. ib  is the randomly selected bias of 

the ith hidden node. ( )g ⋅  is an activation function. iβ  represents the weight connecting the ith 

hidden node and output nodes. 

The Eq. (1) can be simply written as: 
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The output weights can be derived by finding the least square solutions to the linear Eq. (5): 

-y = minH HH y y H y
β

β β+ − = −
                              

(5) 

Here the least square solutions are obtained as follows: 

+=H yβ                                            (6) 

where +H  represents the Moore-Penrose generalized inverse matrix of hidden layer output 

matrix H . 

8 
 



 

 

Fig. 1. The ELM network. 

 

2.3. Regularized Extreme Learning Machine 

The drawback of standard ELM algorithm is the single consideration of empirical error 

minimization which gives rise to overfitting and depresses the generalization ability [42]. To 

solve this problem, both empirical error minimization and structural risk minimization are 

simultaneously taken into account to achieve the best tradeoff with a regularization parameter 

C in RELM model [43]. The formula can be described as follows: 

2 2

2 2
min C y H
β

β β− +
                                    

(7) 

Eq. (7) can be also expressed as the following optimization problem with a constraint 

condition: 

2 2

2 2
min C e
β

β+
                                       

(8) 

. .   s t y H eβ− =                                             (9) 

where [ ]1 2, ,..., T
Ne e e e= is the output error of the training sample ix . 

According to Karush-Kuhn-Tucker (KKT) condition, the corresponding Lagrange function 

is given by: 

2 2

2 2
( , , ) ( )TL e C e y H eβ λ β λ β= + + − −                           

(10) 
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where the nonnegative λ  is the Lagrangian multiplier. The relevant optimization conditions 

are shown as follows: 

0      2 - 0

0      2 0

0      y 0

TL H

L Ce
e
L H e

β λ
β

λ

β
λ

∂ = ⇒ =∂
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For N is the number of training samples, L is the number of hidden nodes, the final output 

weight matrix β  can be derived as follows: 

1

1
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( )       N<L

T T

T T

IH H H y
C

IH H H y
C

β

−

−

 += 
 +


 

                             
(12) 

 

3. Approaches of PC-RELM Model 

The framework of the proposed model for carbon dioxide emission prediction is displayed in 

Fig. 2. This novel approach can be explained in detail as follows: 

In part I, the Pearson coefficient analysis and bilateral significance test are carried out to 

study the relationships between the impact factors and carbon dioxide emissions. The partial 

autocorrelation analysis is adopted to select historical carbon dioxide emissions with highest 

correlation on the target emission. This section contributes to the pre-selection of input for 

research. In part II, PCA is employed for feature extraction and dimension reduction of the 

pre-selected data, which can improve the computational efficiency. Part III aims at realizing 

carbon dioxide emission prediction through RELM model.   
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Fig. 2. Framework for carbon dioxide emission prediction based on PC-RELM. 

 

4. Input Selection 

4.1. Data Source and Conversion 

The research is made based on energy consumption as well as other related data in China from 

the year of 1978 to 2014. The consumption of total energy and percentage composition of four 

kinds of energies that contain raw coal, crude oil, natural gas and primary electricity are 

recorded in China Statistical Yearbook on the basis of standard coal. Considering there is no 

direct promulgation of CO2 emissions, conversion coefficients listed in Table 1 are employed to 

convert the standard coal data to corresponding values of CO2 emissions, according to the 

comprehensive report of “China sustainable development of energy and carbon emission 

scenarios analysis” [44]. The yearly CO2 emissions in China during the period 1978-2014 are 

shown in Table 2. 

Table 1. CO2 Emission Conversion Coefficients for Different Energy Species 

Energy species Coal Crude oil Natural gas Power 
 C/(t/t) 0.7467 0.5825 0.4435 0 
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Table 2. CO2 Emissions over the Period of 1978-2014 in China         (10,000 tons) 

 Year    Total  Year    Total  Year    Total  
1978 38,534.27924 1991 70,231.63738 2004 149,752.0567 
1979 39,563.73908 1992 73,756.9878 2005 171,180.9606 
1980 40,591.80094 1993 77,973.55682 2006 187,499.1829 
1981 42,344.55343 1994 82,210.04039 2007 203,585.7424 
1982 44,734.0561 1995 87,488.97443 2008 207,193.8969 
1983 47,669.68216 1996 90,002.04612 2009 217,033.0961 
1984 52,387.94459 1997 89,694.06873 2010 229,304.1098 
1985 51,788.19323 1998 89,684.42261 2011 248,653.6079 
1986 54,686.05874 1999 92,955.14501 2012 254,071.7937 
1987 58,677.9241 2000 95,437.90723 2013 261,149.6338 
1988 62,947.84656 2001 99,844.06383 2014 263,144.034 
1989 65,524.42751 2002 109,210.1317   
1990 66,623.92291 2003 128,392.9525   

In Fig. 3, it can be clearly found out that there exists a continuous rise in CO2 emissions of 

the total one, which displays the same trend with raw coal. This is due to the fact that coal is the 

main fuel in China which accounts for nearly 65% in primary energy consumption structure. 

However, crude oil and natural gas contribute a relatively small proportion of CO2 emissions. 

Fig. 4 displays the growth multiple of CO2 emissions of different energies from 1979 to 2014 

with the data in 1978 as the base. The trend can be divided into two stages: there was a gentle 

rise with slow growth rate before the year of 2002. After this turning point, the growth rate 

increased rapidly and the growth multiple reached about 6.8 in 2014. Moreover, in response to 

the national call for energy conservation and emission reduction nowadays, the utilization of 

natural gas is vigorously promoted. This is the main reason why natural gas presents a 

significant increase in CO2 emissions in recent years. 
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Fig. 3. CO2 emissions of total energies and main sources during 1978-2014 in China. 

 

Fig. 4. CO2 emission growth multiple of of total energies and main sources. 

 

4.2. SPSS Analysis 

In the previous studies on carbon dioxide emission forecasting, influential factors mainly 

contain energy consumption, GDP, population, urbanization rate, service industry and so on 

[45-48]. In this paper, eleven variables are pre-selected from China Statistical Yearbook for 

CO2 emissions prediction including coal consumption, GDP of primary industry, GDP of 

secondary industry, GDP of tertiary industry, population, urbanization level, transportation 

possession quantity, power generation, steel production, total investment in fixed assets of the 

whole society and area final consumption.  

13 
 



 

 Mining the relationships between CO2 emissions and the eleven pre-selected variables are 

essential for the establishment of a good prediction model. Pearson coefficient and bilateral 

significance test are selected for correlation analysis in this paper. Table 3 presents the values of 

correlation coefficients. It can be found that all the correlation coefficients are more than 0.8 

and the concomitant probability value of bilateral significance test is 0.000 less than 0.05, 

which reveals that there exists positive and significant correlation between CO2 emissions and 

the eleven above-mentioned indicators. Thus, the eleven pre-selected variables all should be 

taken into account in the CO2 emission prediction. 

 

Table 3. Correlation Analysis at the Bilateral Significance Level of 0.01 

Factors Coefficient Significance Factors Coefficient Significance 
Coal 
consumption 

1.000 0.000 
Transportation 
possession quantity 

0.931 0.000 

GDP of 
primary 
industry 

0.974 0.000 Power generation 0.990 0.000 

GDP of 
secondary 
industry 

0.974 0.000 Steel production 0.988 0.000 

GDP of 
tertiary 
industry 

0.956 0.000 
Total investment in 
fixed assets of the 
whole society 

0.918 0.000 

Population 0.866 0.000 
Area final 
consumption 

0.966 0.000 

Urbanization 
level 

0.973 0.000 
   

 

4.3. PACF Analysis 
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The influence of historical CO2 emissions on the target one is taken into consideration in this 

part. PACF is employed to find out the inherent relationship of the dataset. The partial 

autocorrelograms is illustrated in Fig. 5, where the confidence level is 90%. The results 

indicated that carbon emssion data in lag 1 and lag 2 showed a strong correlation, thus these two 

variables are also selected as influential factors. 

 

Fig. 5. PACF of total CO2 emissions dataset. 

 

4.4. PCA Process 

Based on the pre-selected thirteen variables in the section of 4.1 and 4.2, PCA is utilized to 

remove the multicollinearity presented in the predictors. We mine the major information 

containing in the data through this method. The PCA process result is shown in Table 4 and Fig. 

6. It can be seen that the first principal component explain more than 95% of the factors, so this 

principal component is utilized to replace the predictors as the input. 
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Fig. 6. Scree plot in PCA analysis. 

Table 4. Component Matrix 

Component   PC1 
Coal consumption 0.984 
GDP of primary industry 0.996 
GDP of secondary industry 0.995 
GDP of tertiary industry 0.987 
Population 0.845 
Urbanization level 0.961 
Transportation possession quantity 0.973 
Power generation 0.999 
Steel production 0.992 
Total investment in fixed assets of the whole society 0.962 
Area final consumption 0.994 
Historical CO2 emissions(Lag 1) 0.995 
Historical CO2 emissions(Lag 2) 0.993 

 

5. Experiment of CO2 Emission Prediction in China Based on RELM Model 

5.1. Comparative Framework 

The experiment of CO2 emission prediction in China is carried out based on the aforementioned 

related data from 1978 to 2014, totally 37 data points. Wherein, the data from 1980 to 2009 are 

selected as training set and the remaining 5 data are utilized as test set. 
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As shown in Fig. 7, three comparative parts are contained in the framework. In part I, four 

basic models including ELM, BPNN, GM(1,1) and Logistic model are introduced to forecast 

CO2 emissions. Part II utilizes RELM to test whether the regularization parameter donates to 

the prediction accuracy and the effectiveness of PCA is explored in Part III. 

 

Fig. 7. Comparison framework for CO2 emission forecasting. 

 

5.2. Evaluation Criteria of Model Performance 

In order to determine which forecasting model outperforms the other models, the performance 

of the prediction models is usually assessed by statistical criteria: relative error (RE), mean 

absolute percentage error (MAPE), maximum absolute percentage error (MaxAPE), median 

absolute percentage error (MdAPE) and root mean square error (RMSE). The smaller the 

values are, the better the forecasting performance is. These five error indexes are defined as 

follows: 

*

100%t t

t

y y
RE

y
−

= ×

 

                               
(13) 

*

1

1 100%
N

t t

t t

y y
MAPE

N y=

−
= ×∑

                            
(14) 

*

max( 100%)t t

t

y y
MaxAPE

y
−

= ×
                           

(15) 
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y
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(16) 

( )2

1

1 *N

t
RMSE t tN y y

=

= −∑
                             

(17) 

where ty  and *
ty  are the actual and forecast CO2 emissions at time period t , respectively. N

represents the number of CO2 emissions to be predicted. 

 

5.3. Parameter Setting 

As above mentioned, only two parameters need to be pre-set in RELM model. The 

regularization parameter C  and the number of node in hidden layer are set as 210 and 100, 

respectively. As compared models, the selection of parameters in ELM and BPNN is listed in 

Table 5. 

 

Table 5. Parameters for ELM and BPNN Model 

Forecasting model Parameters Value 
ELM Number of node in hidden layer 100 

BPNN 

Number of node in hidden layer 50 
Maximum number of convergence 100 
Learning rate 0.1 
Error 0.00004 

 

5.4. Results and Discussion 

In Fig. 8, CO2 emission prediction curves from 2010 to 2014 are obtained by six different 

models. It can be obviously found out that: (a) in contrast with other five models, the goodness 

of fit between the forecasted value by PC-RELM and actual value reaches the highest degree; (b) 
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the fitting condition of ELM-based models is generally better than other techniques mainly due 

to the strong generalization ability; (c) the hybrid model PC-RELM presents higher predicted 

precision than RELM which indicates that the PCA part can effectively improve the prediction 

performance of the single RELM. 

 

Fig. 8. CO2 emission forecasting results from2010 to 2014. 

 

Fig. 9 displays the relative errors achieved by the six prediction models. The relative errors 

obtained by PC-RELM are all under 0.5% which outperforms other methods except in the year 

of 2011. The single RELM model exhibits a slightly lower error in the second point than 

PCA-RELM. In addition, there emerges large deviation between the actual values and predicted 

ones in BPNN and GM(1,1) model where the maximum relative errors are both over 9%. 
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Fig. 9. Comparison of relative errors for different forecasting models. 

The statistical errors of the six forecasting techniques are clearly shown in Table 6. The 

analysis manifests that: (a) PC-RELM model provides the best prediction results in terms of 

MAPE, MaxAPE, MdAPE and RMSE. (b) Compared with RELM model, the PCA part in 

PC-RELM removes the multicollinearity in pre-selected influential factors and simplifies the 

network structure which contributes to the operation efficiency and the improvement of 

forecasting performance. (c) The errors of RELM is lower than ELM mainly due to the fact that 

the introduction of the regularization parameter in RELM enhances the global optimization and 

generalization ability of ELM model in CO2 emission prediction. (d) Considering the 

significant influence of representative samples on BPNN, the MAPE, MaxAPE, MdAPE and 

RMSE values are higher than ELM-based algorithms. (e) The errors obtained by GM(1,1) are 

largest among the six models mainly because the smoothness degree of the original data has an 

impact on the prediction accuracy. (f) The prediction precision of Logistic model is higher than 

BPNN and GM(1,1) while it is remarkably lower than ELM-based models. The MAPE value of 

Logistic model is 18.5 times larger than PC-RELM. 

 

20 
 



 

Table 6. Statistical Error Measures of Prediction Methods 

Forecasting 
Methods 

Indexes 
MAPE MaxAPE MdAPE RMSE 

PC-RELM 0.252% 0.378% 0.330% 0.003 
RELM 1.704% 3.681% 1.690% 0.021 
ELM 2.239% 4.651% 2.223% 0.026 
BPNN 5.498% 9.164% 5.097% 0.059 
GM(1,1) 5.774% 9.517% 5.123% 0.066 
Logistic Model 4.683% 7.270% 4.377% 0.053 

 

The computing time of PC-RELM, RELM, ELM and BPNN for continuously running for 

100 times in MATLAB 2014a on a Windows 7 system is shown in Table 7. It can be clearly 

seen that ELM-based models save more computing time than BPNN model mainly because 

there is no need to update the randomly selected parameters in the learning process. In contrast 

with ELM, RELM takes 2.44 s for computing, which is slightly longer than ELM. Therefore, 

the regularization part has little impact on the running speed of ELM while improving the 

forecasting accuracy. Notably, PC-RELM is 0.3 s shorter than RELM, thus the PCA part can 

upgrade the running speed to some degree with the improvement of prediction precision. 

 

Table 7. Computing Time of PC-RELM, RELM, ELM and BPNN Models 

 PC-RELM RELM ELM BPNN 
( )t s  

 (100 times) 
2.14 2.44 1.52 65.87 

 

6. Conclusions 

This paper chooses eleven influential factors including the lag phases of historical CO2 

emissions. After reducing the dimensionality of the influential factors through PCA process, 

RELM is introduced to forecast the CO2 emissions. Several conclusions can be obtained as 
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follows: (a) the PCA process is conducive to improving the operation speed and forecasting 

accuracy; (b) the high prediction precision of RELM model is attributed to the introduction of 

regularization part which enhances the global optimization and generalization ability with little 

time cost. (c) RELM combined with PCA outperforms other models with the lowest MAPE, 

MaxAPE, MdAPE and RMSE, indicating that PC-RELM model is a promising technique for 

CO2 emission prediction. 

 Based on the findings in this paper, some suggestions for CO2 emission reduction have 

been proposed with the consideration of selected influential factors: (a) According to the 

correlation analysis, coal consumption is completely correlated with CO2 emission, thus it’s 

necessary to substitute fossil energy with renewable and clean energy so as to achieve the 

diversification of energy consumption. (b) The economic growth should rely on innovative 

talents and technological advancements to improve resource allocation efficiency. The 

proportion of primary, secondary and tertiary industry ought to be reasonably adjusted thereby 

reducing energy consumption of GDP per capita. (c) People should enhance their low carbon 

awareness and cut down energy consumption during their life and labor. (d) To control vehicle 

exhaust emissions, traffic restrictions based on even-numbered and odd-numbered license 

plates can be implemented to reduce pollutant emissions and traffic pressure. 
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