| Home | E-Submission | Sitemap | Contact Us |  
DOI: https://doi.org/10.4491/eer.2018.166
Absorption properties and size distribution of aerosol particles during fall at an urban site of Gwangju, Korea
Seungshik Park, and Geun-Hye Yu
Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
Corresponding Author: Seungshik Park ,Fax: 82-62-530-1859, Email: park8162@chonnam.ac.kr
Received: May 4, 2018;  Accepted: July 12, 2018.
Share :  
To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during fall at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing PM2.5 increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, NO3-, and SO42-. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption Ångström exponent (AAE370-950) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.
Keywords: Asian dust | Brown carbon light absorption | Pollution events | Size distributions | Stable weather conditions
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Editorial Office
464 Cheongpa-ro, #726, Jung-gu, Seoul 04510, Republic of Korea
TEL : +82-2-383-9697   FAX : +82-2-383-9654   E-mail : eer@kosenv.or.kr

Copyright© Korean Society of Environmental Engineers. All rights reserved.        Developed in M2community
About |  Browse Articles |  Current Issue |  For Authors and Reviewers